精英家教网 > 高中数学 > 题目详情

【题目】对于函数f1x),f2x),hx),如果存在实数ab使得hx=af1x+bf2x),那么称hx)为f1x),f2x)的生成函数.

1)函数f1x=x2xf2x=x2+x+1hx=x2x+1hx)是否为f1x),f2x)的生成函数?说明理由;

2)设f1x=1xf2x=,当a=b=1时生成函数hx),求hx)的对称中心(不必证明);

3)设f1x=xx≥2),取a=2b0,生成函数hx),若函数hx)的最小值是5,求实数b的值.

【答案】1)不是,理由见解析;(2)(11);(31

【解析】

1)先假设存在,列出方程,根据方程无解,得出不存在;

2)化简函数式为hx=1x++1,从而判断函数图象关于点(11)中心对称;

3)运用双勾函数的图象和性质,并通过分类讨论确定函数的最值.

解:(1)根据生成函数的定义,设存在ab使得hx=af1x+bf2x),

x2x+1=ax2x+bx2+x+1=a+bx2+bax+b

对比两边的系数可知,,方程无解,

所以,hx)不是f1x),f2x)的生成函数;

2)因为a=b=1,所以,hx=1x+

hx=1x+=1x+=+1

该函数的图象为双曲线,对称中心为(11);

3)根据题意,hx=2x+=2x1++2x≥2),

根据基本不等式,2x1+≥2

当且仅当:x=+1时,取“=”

因此,函数hx)在(1 +1)上单调递减,在(+1+∞)上单调递增,

故令+1=2,解得b=2,最值情况分类讨论如下:

①当b∈(02]时,+1≤2

所以,当x≥2/span>时,hx)单调递增,hxmin=h2=b+4=5,解得b=1,符合题意;

②当b∈(2+∞)时,+12

所以,当x≥2时,hx)先减后增,hxmin=h+1=2+2=5,解得b=,不合题意;

综上:实数b的值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?

(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.

(1)求所选3人中女生人数ξ≤1的概率;

(2)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代著名数学典籍《九章算术》在商功篇章中有这样的描述:今有圆亭,下周三丈,上周二丈,问积几何?其中圆亭指的是正圆台体形建筑物.算法为:“上下底面周长相乘,加上底面周长自乘、下底面周长自乘的和,再乘以高,最后除以36.”可以用程序框图写出它的算法,如图,今有圆亭上底面周长为6,下底面周长为12,高为3,则它的体积为( )

A. 32 B. 29 C. 27 D. 21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为0),过点的直线的参数方程为t为参数),直线与曲线C相交于AB两点.

)写出曲线C的直角坐标方程和直线的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).

年份(第年)

人数(人)

(1)试求人数关于年份的回归直线方程

(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);

(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】确定下列各值的符号.

1

2

3

4

5

6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,进而求得qa1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.

由题意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,则a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}为正项等比数列,

∴{bn}为等差数列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=∵nN*,故n=1112时,(Snmax=132.

故答案为:C.

【点睛】

这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。

型】单选题
束】
12

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

温差

9

10

11

8

12

发芽数(颗)

38

30

24

41

17

利用散点图,可知线性相关。

(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;

(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.

(公式:

查看答案和解析>>

同步练习册答案