精英家教网 > 高中数学 > 题目详情
7.已知函数g(x)=a-x3($\frac{1}{e}≤x≤e\;,\;e$为自然对数的底数)与h(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是[1,e3-3].

分析 由已知,得到方程a-x3=-3lnx?-a=3lnx-x3在[$\frac{1}{e}$,e]上有解,构造函数f(x)=3lnx-x3,求出它的值域,得到-a的范围即可.

解答 解:由已知,得到方程a-x3=-3lnx?-a=3lnx-x3在[$\frac{1}{e}$,e]上有解.
设f(x)=3lnx-x3,求导得:f′(x)=$\frac{3}{x}$-3x2=$\frac{3(1-{x}^{3})}{x}$,
∵$\frac{1}{e}$≤x≤e,∴f′(x)=0在x=1有唯一的极值点,
∵f($\frac{1}{e}$)=-3-$\frac{1}{{e}^{3}}$,f(e)=3-e3,f(x)极大值=f(1)=-1,
且知f(e)<f($\frac{1}{e}$),
故方程-a=2lnx-x2在上有解等价于3-e3≤-a≤-1.
从而a的取值范围为[1,e3-3].
故答案为:[1,e3-3].

点评 本题考查了构造函数法求方程的解及参数范围;关键是将已知转化为方程a-x3=-3lnx?-a=3lnx-x3在上有解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=3x2-2ax+3(a为常数),命题p:y=f(x)有两个不同的零点;命题q:f(x)≥0在区间(0,+∞)上恒成立.若“p∨q”为真,“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4x2-4ax+5在闭区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.《中国好声音(TheVoiceofChina)》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:
导师转身人数(人)4321
获得相应导师转身的选手人数(人)1221
现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)请列出所有的基本事件;
(2)求两人中恰好其中一位为其转身的导师不少于3人,而另一人为其转身的导师不多于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=\left\{\begin{array}{l}3({a-1})x+4a\;,\;\;x<1\\{log_a}x\;,\;\;x≥1\end{array}\right.$是R上的减函数,那么a的取值范围是[$\frac{3}{7}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.根据如图,当输入x为2006时,输出的y=10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z=(a-3)+(a2-2a-3)i为实数(i为虚数单位),则实数a的值是(  )
A.3B.-3或1C.3或-1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A、B两点,若A到抛物线的准线的距离为5,则|AB|=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(1-x),g(x)=log2(1+x),令h(x)=f(x)-g(x)
(1)求函数h(x)定义域,判断h(x)的奇偶性并写出证明过程.
(2)判断函数h(x)在定义域内的单调性,写出必要的推理过程.

查看答案和解析>>

同步练习册答案