分析 由已知,得到方程a-x3=-3lnx?-a=3lnx-x3在[$\frac{1}{e}$,e]上有解,构造函数f(x)=3lnx-x3,求出它的值域,得到-a的范围即可.
解答 解:由已知,得到方程a-x3=-3lnx?-a=3lnx-x3在[$\frac{1}{e}$,e]上有解.
设f(x)=3lnx-x3,求导得:f′(x)=$\frac{3}{x}$-3x2=$\frac{3(1-{x}^{3})}{x}$,
∵$\frac{1}{e}$≤x≤e,∴f′(x)=0在x=1有唯一的极值点,
∵f($\frac{1}{e}$)=-3-$\frac{1}{{e}^{3}}$,f(e)=3-e3,f(x)极大值=f(1)=-1,
且知f(e)<f($\frac{1}{e}$),
故方程-a=2lnx-x2在上有解等价于3-e3≤-a≤-1.
从而a的取值范围为[1,e3-3].
故答案为:[1,e3-3].
点评 本题考查了构造函数法求方程的解及参数范围;关键是将已知转化为方程a-x3=-3lnx?-a=3lnx-x3在上有解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
导师转身人数(人) | 4 | 3 | 2 | 1 |
获得相应导师转身的选手人数(人) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com