【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于A,B两点,P是圆C上不同于A,B的任意一点.
(1)求圆心的极坐标;
(2)求△PAB面积的最大值.
科目:高中数学 来源: 题型:
【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距市且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.
(1)快艇至少以多大的速度行驶才能把稿件送到司机手中?
(2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数,且相邻两对称轴间的距离为
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴正方向向右平移个单位长度,再把横坐标缩短为原来的(纵坐标不变),得到函数的图象,当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,,如图所示.
(1)求函数的解析式;
(2)应怎样分配投资资金,才能使投资获得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.
(1)讨论函数h(x)=的单调性;
(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线具有性质:若、是双曲线左、右顶点,为双曲线上一点,且在第一象限.记直线,的斜率分别为,,那么与之积是与点位置无关的定值.
(1)试对椭圆,类比写出类似的性质(不改变原有命题的字母次序),并加以证明.
(2)若椭圆的左焦点,右准线为,在(1)的条件下,当取得最小值时,求的垂心到轴的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com