精英家教网 > 高中数学 > 题目详情
(1)设关于x的不等式
ax-1x+1
>0
的解集为P,若P={x|-3<x<-1},求实数a的值;
(2)已知函数f(x)=|x-2|+|x-4|解不等式f(x)≤4.
分析:(Ⅰ)由
ax-1
x+1
>0
的解集为P={x|-3<x<-1},可得-3和-1是不等式中各个因式的根,故
1
a
=-3,由此求得a的值.
(Ⅱ)要解的不等式即 ①
x≤2
-2x+6≤4
,或 ②
2<x<4
2≤4
,或③
x≥4
2x-6≤4
.分别求出①、②、③的解集,再取并集,即得所求.
解答:解:(Ⅰ)由
ax-1
x+1
>0
的解集为P={x|-3<x<-1},可得-3和-1是不等式中各个因式的根,故
1
a
=-3,
a=-
1
3
.    …(5分)
(Ⅱ)f(x)=|x-2|+|x-4|=
-2x+6;(x≤2)
2;(2<x<4)
2x-6;(x≥4)
…(7分)
故要解的不等式即 ①
x≤2
-2x+6≤4
,或 ②
2<x<4
2≤4
,或③
x≥4
2x-6≤4

解①得1≤x≤2,解②得 2 x<4,解③得 4≤x≤5.….(10分)
综上可得,不等式的解集为:{x|1≤x≤5}.…(12分)
点评:本题主要考查绝对值不等式的解法,分式不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
2-x+a
1+x
(a为实常数),y=g(x)与y=e-x的图象关于y轴对称.
(1)若函数y=f[g(x)]为奇函数,求a的取值.
(2)当a=0时,若关于x的方程f[g(x)]=
g(x)
m
有两个不等实根,求m的范围;
(3)当|a|<1时,求方程f(x)=g(x)的实数根个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)因客流量临时增大,某鞋店拟用一个高为50cm(即EF=50cm)的平面镜自制一个竖直摆放的简易鞋镜.根据经验,一般顾客AB的眼睛B到地面的距离x(cm)在区间[140,180]内.设支架FG高为h(0<h<90)cm,AG=100cm,顾客可视的镜像范围为CD(如图所示),记CD的长度为y(y=GD-GC).
(1)当h=40cm时,试求y关于x的函数关系式和y的最大值;
(2)当顾客的鞋A在镜中的像A1满足不等关系GC<GA1≤GD(不计鞋长)时,称顾客可在镜中看到自己的鞋,若一般顾客都能在镜中看到自己的鞋,试求h的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1.设命题p:函数y=ax是定义在R上的增函数;命题q:关于x的方程x2+ax+1=0有两个不等的负实根.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
1
|x-1|
,x≠1
1,x=1
,若关于x的方程f2(x)+bf(x)+c=0,有3个不等的实数根x1,x2,x3,则x1+x2+x3=(  )
A、0B、1C、3D、2

查看答案和解析>>

科目:高中数学 来源:高三数学教学与测试 题型:044

设关于x的二次方程+(p-1)x+p+1=0有两个不等的正根,且一根大于另一根的两倍,求p的取值范围.

查看答案和解析>>

同步练习册答案