(本题满分12分)定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
(1)证明:f(x+y)=f(x)+f(y)(x,y∈R), ①
令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有
0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.
(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.
f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,
3-(1+k)·3+2>0对任意x∈R成立.
令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.
R恒成立.
解析
科目:高中数学 来源:2011届广东省高考猜押题卷文科数学(三)解析版 题型:解答题
(本题满分12分)
如图6,在平面直角坐标系中,设点,直线:,点在直线上移动,
是线段与轴的交点, .
(I)求动点的轨迹的方程;
(II)设圆过,且圆心在曲线上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高三3月月考理科数学试卷 题型:解答题
(本题满分12分) 设椭圆 C1:()的一个顶点与抛物线 C2: 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点.
(I)求椭圆C的方程;
(II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一上学期期中试题数学 题型:解答题
(本题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为个时,零件的实际出厂单价为P元,写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个时,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一上学期12月月考数学 题型:解答题
(本题满分12分) 设是定义在上的增函数,令
(1)求证时定值;
(2)判断在上的单调性,并证明;
(3)若,求证。
查看答案和解析>>
科目:高中数学 来源:山东省枣庄市2010届高三年级调研考试数学(文科)试题 题型:解答题
(本题满分12分)
如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B。
(1)若|AB|=8,求抛物线的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;
(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com