精英家教网 > 高中数学 > 题目详情

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求证: 互相垂直;
(2)若k ﹣k 的长度相等,求β﹣α的值(k为非零的常数).

【答案】
(1)证明:由题意得: + =(cosα+cosβ,sinα+sinβ)

=(cosα﹣cosβ,sinα﹣sinβ)

∴( + )( )=(cosα+cosβ)(cosα﹣cosβ)+(sinα+sinβ)(sinα﹣sinβ)

=cos2α﹣cos2β+sin2α﹣sin2β=1﹣1=0

+ 互相垂直


(2)解:方法一:k + =(kcosα+cosβ,ksinα+sinβ),

﹣k =(cosα﹣kcosβ,sinα﹣ksinβ)

|k + |= ,| ﹣k |=

由题意,得4cos(β﹣α)=0,

因为0<α<β<π,

所以β﹣α=

方法二:由|k + |=| ﹣k |得:|k + |2=| ﹣k |2

即(k + 2=( ﹣k 2,k2| |2+2k +| |2=| |2﹣2k +k2| |2

由于| |=1,| |=1

∴k2+2k +1=1﹣2k +k2,故 =0,

即(cosα,sinα)(cosβ,sinβ)=0

即cosαcosβ+sinαsinβ=4cos(β﹣α)=0

因为0<α<β<π,

所以β﹣α=


【解析】(1)根据已知中向量 的坐标,分别求出向量 + 的坐标,进而根据向量数量积公式及同角三角函数的平方关系,可证得 互相垂直;(2)方法一:分别求出k ﹣k 的坐标,代入向量模的公式,求出k ﹣k 的模,进而可得cos(β﹣α)=0,结合已知中0<α<β<π,可得答案.方法二:由|k + |=| ﹣k |得:|k + |2=| ﹣k |2 , 即(k + 2=( ﹣k 2 , 展开后根据两角差的余弦公式,可得cos(β﹣α)=0,结合已知中0<α<β<π,可得答案.
【考点精析】通过灵活运用数量积判断两个平面向量的垂直关系,掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆Ox2y2=4,直线l:12x-5yc=0(其中c为常数).下列有关直线l与圆O的命题中正确命题的序号是________

①当c=0时,圆O上有四个不同的点到直线l的距离为1;

②若圆O上有四个不同的点到直线l的距离为1,则-13<c<13;

③若圆O上恰有三个不同的点到直线l的距离为1,则c=13;

④若圆O上恰有两个不同的点到直线l的距离为1,则13<c<39;

⑤当c=±39时,圆O上只有一个点到直线l的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:

(1)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;

(2)据(1)的结果估计当销售额为1亿元时的利润额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为原点,离心率,其中一个焦点的坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当点在椭圆上运动时,设动点的运动轨迹为若点满足: 其中上的点.直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线交曲线 两点,在轴上是否存在定点,使得直线的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一架飞机以600km/h的速度,沿方位角60°的航向从A地出发向B地飞行,飞行了36min后到达E地,飞机由于天气原因按命令改飞C地,已知AD=600 km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.问收到命令时飞机应该沿什么航向飞行,此时E地离C地的距离是多少?(参考数据:tan37°=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)在下列结论中①“”为真是“”为真的充分不必要条件;②“ ”为假是“”为真的充分不必要条件;③“ ”为真是“”为假的充分不必要条件;④“ ” 为真是“”为假充分不必要条件.正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].

(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

同步练习册答案