精英家教网 > 高中数学 > 题目详情
已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.
分析:(Ⅰ)根据动圆P经过点F且与直线x=-2相切,可得P到F的距离等于P到直线x=-2的距离,从而扩大圆心P的轨迹为以F(2,0)为焦点的抛物线,即可求得轨迹C的方程;
(Ⅱ)求出直线,代入抛物线方程,求出交点坐标,利用向量条件,可得M的坐标,结合点M为轨迹C上一点,即可求得结论.
解答:解:(Ⅰ)∵动圆P经过点F且与直线x=-2相切,
∴P到F的距离等于P到直线x=-2的距离
∴圆心P的轨迹为以F(2,0)为焦点的抛物线
∴轨迹C的方程为y2=8x;
(Ⅱ)设M(x,y),则直线l的方程为y=
3
(x-2)
代入y2=8x得:3x2-20x+12=0
∴x1=
2
3
,x2=6
∴y1=-
4
3
3
,y2=4
3

OM
=
OA
OB

∴x=x1+λx2,y=y1+λy2
∴x=
2
3
+6λ,y=-
4
3
3
+4
3
λ
∵点M为轨迹C上一点,∴y2=8x,
∴(-
4
3
3
+4
3
λ)2=8(
2
3
+6λ)
∴3λ2-5λ=0
∴λ=
5
3
或0.
点评:本题考查抛物线方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=-2,动圆P过定点F与定直线l相切,记动圆圆心P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=
9
2
,若点P(x,y)到直线l的距离为d,且d=
3
2
|PF|
(1)求点P的轨迹方程;
(2)若F′(-2,0),求
PF
PF′
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)
.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)

(1)求动点P所在曲线C的方程;
(2)直线l1过点F与曲线C交于A、B两个不同点,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的最小值.

查看答案和解析>>

同步练习册答案