精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=1+lgx,则f(10)=2.

分析 利用对数的运算法则即可得出.

解答 解:f(10)=1+lg10=2.
故答案为:2.

点评 本题考查了对数的运算法则,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log2(2x-3)+3.
(1)求f(x)的定义域;
(2)求函数y=f(x),x∈[4,7]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:一个二次函数的图象与x轴的交点为(-1,0),(3,0),与y轴的交点为(0,3).求这个二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.log1000.1=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l过直线2x+y+8=0和直线x+y+3=0的交点,且垂直于直线4x+14y-1=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将直线y=2x+1上所有点的纵坐标不变,横坐标伸长到原来的2倍,得到的图形的方程是y=x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1•e2+1的取值范围为(  )
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m与椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$有公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数g(x)=Asin(ωx+φ)+B(A>0,ω>0),满足:当x1,x2∈R时,有|g(x1)-g(x2)|≤$\frac{1}{4}$,当相位为$\frac{π}{6}$时,g(x)的值为$\frac{7}{16}$.
(1)当g(x)的周期为π,初相为$\frac{π}{3}$,且g(x)≥$\frac{1}{2}$时,求x的范围;
(2)若f(x)=ax-$\frac{3}{2}$x2的最大值不大于$\frac{1}{6}$,且f(g(x))≥$\frac{1}{8}$,求a的值.

查看答案和解析>>

同步练习册答案