精英家教网 > 高中数学 > 题目详情

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

【答案】C
【解析】解:∵正实数a,b满足a+b=1,
= =2+ ≥2+2=4,故 有最小值4,故A不正确.
由基本不等式可得 a+b=1≥2 ,∴ab≤ ,故ab有最大值 ,故B不正确.
由于 =a+b+2 =1+2 ≤2,∴ ,故 有最大值为 ,故C正确.
∵a2+b2 =(a+b)2﹣2ab=1﹣2ab≥1﹣ = ,故a2+b2有最小值 ,故D不正确.
故选:C.
由于 = =2+ ≥4,故A不正确.
由基本不等式可得 a+b=1≥2 ,可得 ab≤ ,故B不正确.
由于 =1+2 ≤2,故 ,故 C 正确.
由a2+b2 =(a+b)2﹣2ab≥1﹣ = ,故D不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】葫芦岛市交通局为了解机动车驾驶员对交通法规的知晓情况,对渤海、丰乐、安宁、天正四个社区做分层抽样调查.其中渤海社区有驾驶员96人.若在渤海、丰乐、安宁、天正四个社区抽取驾驶员的人数分别为12,21,25,43,则丰乐、安宁、天正三个社区驾驶员人数是多少( )
A.101
B.808
C.712
D.89

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则 的值为( )

A.9
B.10
C.11
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:

休假次数

0

1

2

3

人数

5

10

20

15


(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆x2+y2=5x内,过点 有n条弦的长度成等差数列,最短弦长为数列的首项a1 , 最长弦长为an , 若公差 ,那么n的取值集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个正三棱锥的零件,P是侧面ACD上的一点.过点P作一个与棱AB垂直的截面,怎样画法?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,底面ABC等边三角形,E,F分别是BC,CC1的中点.求证: (Ⅰ) EF∥平面A1BC1
(Ⅱ) 平面AEF⊥平面BCC1B1

查看答案和解析>>

同步练习册答案