A. | f(x)g(x)是奇函数 | B. | f(g(x))是奇函数 | C. | g(f(x))是偶函数 | D. | |f(x)|g(x)偶函数 |
分析 根据函数奇偶性的定义进行判断即可.
解答 解:∵f(-x)=e-x-ex=-(ex-e-x)=-f(x),∴f(x)为奇函数,
g(x)=sinx为奇函数,
则A.f(-x)g(-x)=f(x)g(x),则f(x)g(x)是偶函数,
B.f(g(-x))=f(-g(x))=-f(g(x)),则f(g(x))为奇函数,
C.g(f(-x))=g(-f(x))=-g(f(x)),则g(f(x))为奇函数,
D.|f(-x)|g(-x)=-|-f(x)|g(x)=-|f(x)|g(x),则|f(x)|g(x)是奇函数,
故选:B.
点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a∥α,b∥a,则b∥α | B. | 若a∥α,b∥α,a?β,b?β,则β∥α | ||
C. | 若α∥β,b∥α,则b∥β | D. | 若α∥β,a?α,则a∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$] | B. | [$\frac{\sqrt{3}}{4}$,$\frac{1}{2}$] | C. | [$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{6}}{6}$] | D. | [$\frac{3}{8}$,$\frac{\sqrt{3}}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com