精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的焦点为,准线为为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.

1)求的值及该圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

【答案】1,圆的方程为:.(2)答案见解析

【解析】

1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;

2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,利用向量的数量积为0,即可证出.

解:(1)易知点的坐标为

所以,解得.

又圆的圆心为

所以圆的方程为.

2)证明易知,直线的斜率存在且不为0

的方程为

代入的方程,得.

,得

所以,解得.

代入的方程,得,即点的坐标为.

所以

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F,点,过M的直线与椭圆E交于AB两点,线段AB中点为C,设椭圆EAB两点处的切线相交于点PO为坐标原点.

1)证明:OCP三点共线;

2)已知是抛物线的弦,所在直线过该抛物线的准线与y轴的交点,是弦在两端点处的切线的交点,小明同学猜想:在定直线上.你认为小明猜想合理吗?若合理,请写出所在直线方程;若不合理,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M,使得对任意中至少有一个不小于M,则记作,那么下列命题正确的是( ).

A.,则数列各项均大于或等于M

B.,则

C.,则

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

同步练习册答案