精英家教网 > 高中数学 > 题目详情

在长方体中,为线段中点.

(1)求直线与直线所成的角的余弦值;
(2)若,求二面角的大小;
(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.

(1);(2);(3)

解析试题分析:(1)以点为原点,建立空间直角坐标系,写出各点的坐标,从而可求出的坐标,因为,所以直线与直线所成的角为,其余弦值;(2)分别求出平面和平面的法向量,求出法向量所成的角,转化为二面角的平面角;(3)假设在棱上存在一点,使得平面,则,设,则垂直于平面的法向量,从而求出,即存在点,使平面
试题解析:
(1)以点为原点,分别以所在的直线为轴建立空间直角坐标系,
 ,
 ,
所成角的余弦值为0 .
(2) 连接,由长方体,得 ,
,,由(1)知,故平面. 所以是平面的法向量,而,
,设平面的法向量为,则有,取,可得
 ,所以二面角是 .
(3) 假设在棱上存在一点,使得平面,则,设,平面的法向量为则有,取,可得
要使平面,只要 ,
,又平面,
存在点使平面,此时.
考点:本题考查的知识点是向量在立体几何中的应用,主要考查了利用向量方法解决空间中线面角,二面角的平面角的求解,以及线面平行的判定方法,解题的关键是建立空间坐标系,利用向量法解决空间中立体几何问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.

(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.

(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.

查看答案和解析>>

同步练习册答案