分析 由已知结合函数零点的存在定理,可得$\left\{\begin{array}{l}f(0)•f(1)<0\\ f(1)•f(3)<0\end{array}\right.$,解得k的取值范围.
解答 解:∵函数f(x)=kx2+x+k有两个不同的零点,且一个零点在区间(0,1)内,另一个在区间(1,3),
∴$\left\{\begin{array}{l}f(0)•f(1)<0\\ f(1)•f(3)<0\end{array}\right.$,即$\left\{\begin{array}{l}k•(2k+1)<0\\(2k+1)•(10k+3)<0\end{array}\right.$,
解得:k∈(-$\frac{1}{2}$,$-\frac{3}{10}$)
点评 本题考查的知识点是函数的零点的存在定理,难度不大,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | -2 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com