精英家教网 > 高中数学 > 题目详情
4.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=(  )
A.1B.2C.4D.4

分析 求得抛物线的焦点和准线方程,运用抛物线的定义可得|AF|=x1+1=2,求得A的坐标,即可得到AB⊥x轴,可得|BF|=|AF|=2.

解答 解:抛物线y2=4x的焦点F为(1,0),
准线为x=-1,设A(x1,y1),B(x2,y2),
由抛物线的定义可得|AF|=x1+1=2,
解得x1=1,y1=±2,
即有AB⊥x轴,
可得|BF|=|AF|=2.
故选:B.

点评 本题考查抛物线的定义、方程和性质,运用定义法解题是关键,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.过点(2,3)且在x轴上的截距为3的直线方程是3x+y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足x2+y2-4x-2y+4=0,则$\frac{x+y}{x}$的取值范围为[1,$\frac{7}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组函数相等的是(  )
A.$f(x)=\frac{{{x^2}-1}}{x-1}与g(x)=x+1$B.$f(x)=1与g(x)=\frac{{\sqrt{x^2}}}{x}$
C.f(x)=(x-2)0与g(x)=1D.$f(x)=\sqrt{x^4}与g(x)={x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|3≤x<10},集合B={x|2x-8≥0}.
(1)求A∪B;A∩B
(2)求∁R(A∩B)∩(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正方形ABCD,PA⊥平面ABCD,且$PA=AB=\sqrt{2}$,E是AB中点.
(1)求证:AE⊥平面PBC;
(2)求点E到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为(  )
A.-1B.0C.-1或0D.1或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的虚轴长为2,离心率为$\frac{{\sqrt{5}}}{2}$,F1,F2为双曲线的两个焦点.
(1)求双曲线的方程;
(2)若双曲线上有一点P,满足∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P是椭圆$\frac{{x}^{2}}{4}$+y2=1上的任意一点,A(4,0),若M为线段PA中点,则点M的轨迹方程是(  )
A.(x-2)2+4y2=1B.(x-4)2+4y2=1C.(x+2)2+4y2=1D.(x+4)2+4y2=1

查看答案和解析>>

同步练习册答案