精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
msinxcosx+mcos2x+n(m>0)在区间[0,
π
4
]
上的值域为[1,2].
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ) 在△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面积为
3
,求边长a的值.
考点:三角函数中的恒等变换应用,余弦定理的应用
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)函数可化简为f(x)=msin(2x+
π
6
)+
m
2
+n
,从而可根据其值域求出m,n的值,从而确定解析式,由正弦函数的性质即可确定单调区间;
(Ⅱ)f(A)=1即可求得A,由sinB=4sin(π-C),△ABC的面积为
3
,可求得bc=4,根据余弦定理即可求边长a的值.
解答: 解:(Ⅰ) f(x)=
3
msinxcosx+mcos2x+n
=
3
m
2
sin2x+
m
2
(1+cos2x)+n
=
m
2
(
3
sin2x+cos2x)+
m
2
+n
=msin(2x+
π
6
)+
m
2
+n

x∈[0,
π
4
]
时,2x+
π
6
∈[
π
6
3
]
,则
1
2
≤sin(2x+
π
6
)≤1

由m>0,则
m
2
+
m
2
+n=1
m+
m
2
+n=2
解得m=2,n=-1,
所以f(x)=2sin(2x+
π
6
)

2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z),
故函数f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
]
,k∈Z.
(Ⅱ)由f(A)=2sin(2A+
π
6
)=1
,即sin(2A+
π
6
)=
1
2
,所以A=
π
3

因为sinB=4sin(π-C),所以sinB=4sinC,则b=4c,
又△ABC面积为
3
,所以S=
1
2
bcsin
π
3
=
3
,即bc=4,
所以b=4,c=1,则a2=42+12-2×4×1×cos
π
3
=13

所以a=
13
点评:本题主要考察了余弦定理的应用,三角函数中的恒等变换应用,三角形面积公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(  )
A、5
2
B、20
2
C、15
2
D、10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

2
3
-2-log23×log38=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面α分别与直线BC,AD相交于点G,H,有下列三个结论,其中正确的个数是(  )
①对于任意的平面α,都有直线GF,EH,BD相交于同一点;
②存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长
线上;
③对于任意的平面α,它把三棱锥的体积分成相等的两部分.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

(文做)已知函数f(x)=x2-k(x+1)+x的一个零点在(2,3)内,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国的人口普查每十年进行一次,在第五次(2000年11月1日开始)人口普查时我国人口约为13亿,并发现我国人口的年平均增长率约为1%,如果按照这种速度增长,在我国开始第七次(2020年11月1日开始)普查时的人口数约为(  )亿.
A、13(1+20×1%)
B、13(1+19×1%)
C、13(1+1%)20
D、13(1+1%)19

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+2y+1≥0
3x-y+3≥0
,若(-1,0)是使mx+y取得最大值的可行解,则实数m的取值范围是(  )
A、m≤3
B、m≤-3
C、m≥-
1
2
D、m≥
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1.线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作倾斜角为30°的直线交抛物线于A、B两点,若线段AB的长为8,则p=
 

查看答案和解析>>

同步练习册答案