【题目】过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=2|BF|,则直线AB的斜率为( )
A.
B.
C. 或
D.
【答案】C
【解析】解:如图,点A在第一象限. 过A、B分别向抛物线的准线作垂线,垂足分别为D、E,
过A作EB的垂线,垂足为C,则四边形ADEC为矩形.
由抛物线定义可知|AD|=|AF|,|BE|=|BF|,
又∵|AF|=2|BF|,
∴|AD|=|CE|=2|BE|,即B为CE中点,
∴|AB|=3|BC|,
在Rt△ABC中,|AC|=2 |BC|,
∴直线l的斜率为 =2 ;
当点B在第一象限时,同理可知直线l的斜率为﹣2 ,
∴直线l的斜率为±2 ,
故选:C.
当点A在第一象限,通过抛物线定义及|AF|=2|BF|可知B为CE中点,通过勾股定理可知|AC=2 |BC|,进而计算可得结论.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+)﹣1(ω>0,|φ|<π)的一个零点是 ,其图象上一条对称轴方程为 ,则当ω取最小值时,下列说法正确的是 . (填写所有正确说法的序号) ①当 时,函数f(x)单调递增;
②当 时,函数f(x)单调递减;
③函数f(x)的图象关于点 对称;
④函数f(x)的图象关于直线 对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .现沿对角线AC折起,使得平面DAC⊥平面ABC,此时点A,B,C,D在同一个球面上,则该球的体积是( )
A.
B.
C.
D.12π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、对称轴;
(3)此函数图象由y=sinx的图象怎样变换得到?(注:y轴上每一竖格长为1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 的有 条弦,且任意两条弦都彼此相交,任意三条弦不共点,这 条弦将圆 分成了 个区域,(例如:如图所示,圆 的一条弦将圆 分成了2(即 )个区域,圆 的两条弦将圆 分成了4(即 )个区域,圆 的3条弦将圆 分成了7(即 )个区域),以此类推,那么 与 之间的递推式关系为: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的 列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
合计 |
(参考公式 ,其中 .)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数 的图象向左平移 个单位,再向上平移1个单位,得到g(x)的图象.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],则2x1﹣x2的最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com