精英家教网 > 高中数学 > 题目详情
13.已知集合A=$\{x|y=\sqrt{6+5x-{x^2}}\}$,B={x|(x-1+m)(x-1-m)≤0}.
(1)若m=3,求A∩B;
(2)若m>0,A⊆B,求m的取值范围.

分析 (1)求出A中x的范围确定出A,把m=3代入B中不等式求出解集确定出B,找出两集合的交集即可;
(2)表示出B中不等式的解集,由A为B的子集,确定出m的范围即可.

解答 解:(1)由6+5x-x2≥0,解得-1≤x≤6,
∴A={x|-1≤x≤6},
当m=3时,集合B={x|-2≤x≤4},
则A∩B={x|-1≤x≤4};
(2)∵m>0,B={x|(x-1+m)(x-1-m)≤0}={x|1-m≤x≤1+m},且A⊆B,
∴$\left\{\begin{array}{l}1-m≤-1\\ 1+m≥6\end{array}\right.$,
解得:m≥5.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\frac{3\sqrt{6}}{2}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,且AB=2CD,侧面ADE为等边三角形,侧面ABE为等腰直角三角形,且角A为直角,且平面ABE⊥平面ADE.
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求平面ADE和平面BCE所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C1:(x-1)2+y2=$\frac{1}{2}$与圆C2的公切线是直线y=x和y=-x,且两圆的圆心距是3,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx.
(1)求函数y=f(x)的单调区间;
(2)若函数g(x)=lnx-$\frac{a}{x}$有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线y=x+b与曲线x=$\sqrt{1-{y^2}}$有且仅有一个公共点,则b的取值范围是(  )
A.|b|=$\sqrt{2}$B.-1<b≤1或b=-$\sqrt{2}$C.-1≤b≤$\sqrt{2}$D.0<b≤1或b=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心.
(Ⅰ)试求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[-π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若对函数y=f(x)定义域内的每一个值x1,都存在唯一的值x2,使得f(x1)f(x2)=1成立,则称此函数为“黄金函数”,给出下列四个函数:①y=$\frac{1}{x}$;②y=log2x;③y=($\frac{1}{2}$)x;④y=x2,其中是“黄金函数”的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设直线l经过点M和点N(-1,1),且点M是直线x-y-1=0被直线l1:x+2y-1=0,l2:x+2y-3=0所截得线段的中点,求直线l的方程.

查看答案和解析>>

同步练习册答案