精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,a=
(1)求bcosC+ccosB的值;
(2)若cosA= ,求b+c的最大值.

【答案】
(1)解:△ABC中,bcosC+ccosB=b +c =a=
(2)解:若cosA= ,则A= ,由余弦定理可得a2=3=b2+c2﹣2bccosA=(b+c)2﹣3bc,

∴(b+c)2=3+3bc≤3+3 ,∴b+c≤2 ,当且仅当b=c时,取等号,故b+c的最大值为2


【解析】(1)利用余弦定理求得bcosC+ccosB的值.(2)若cosA= ,利用余弦定理以及基本不等式求得b+c的最大值.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是边长为1的正方形,PA⊥平面ABCD,N是PC的中点.
(Ⅰ)若PA=1,求二面角B﹣PC﹣D的大小;
(Ⅱ)求AN与平面PCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣|x|+ ,若f(x﹣2)>f(3),则x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中, 相交于点 平面 .

(I)求证: 平面

(II)当直线与平面所成的角的余弦值为时,求证:

(III)在(II)的条件下,求异面直线所成的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:

产品A(件)

产品B(件)

研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60

试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.
(Ⅰ)求游戏Ⅰ中甲赢的概率;
(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:
①二面角B﹣PA﹣C大小的取值范围是( ,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成 的直线有3条;
④若二面角B﹣PA﹣C大小为 ,则过点N与平面PAC和平面PAB都成 的直线有3条.
正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,隔河看两目标A、B,但不能到达,在岸边选取相距 km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.

查看答案和解析>>

同步练习册答案