精英家教网 > 高中数学 > 题目详情

已知函数f(x)=()x

函数y=f1(x)是函数y=f(x)的反函数.

(1)若函数y=f1(mx2+mx+1)的定义域为R,求实数m的取值范围;

(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);

(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由

 

【答案】

(1)∵f1(x)

=logx(x>0),

∴f1(mx2+mx+1)

=log(mx2+mx+1),由题知,mx2+mx+1>0恒成立,

∴①当m=0时,1>0满足题意;

②当m≠0时,

应有

⇒0<m<4,

∴实数m的取值范围为

0≤m<4.

(2)∵x∈[-1,1],

∴()x∈[,3],

y=[f(x)]2-2af(x)+3

=[()x]2-2a()x+3

=[()x-a]2+3-a2

当a<时,

ymin=g(a)=-;

当≤a≤3时,

ymin=g(a)=3-a2

当a>3时,ymin=g(a)

=12-6a.

∴g(a)

(3)∵m>n>3,且g(x)=12-6x在(3,+∞)上是减函数.

又g(x)的定义域为[n,m],值域为[n2,m2].

②-①得:6(m-n)=(m+n)(m-n)

∵m>n>3,∴m+n=6.但这与“m>n>3”矛盾.

∴满足题意的m、n不存在.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案