精英家教网 > 高中数学 > 题目详情
12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,则tan2β等于(  )
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

分析 由条件利用两角差的正切公式,求得要求式子的值.

解答 解:∵tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,则tan2β=tan[(α+β)-(α-β)]=$\frac{tan(α+β)-tan(α-β)}{1+tan(α+β)tan(α-β)}$=$\frac{\frac{1}{3}-\frac{1}{2}}{1+\frac{1}{3}•\frac{1}{2}}$=-$\frac{1}{7}$,
故选:C.

点评 本题主要考查两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.在频率分布直方图中,众数左边和右边的直方图的面积相等
B.为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行编号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样
C.“x≠1”是“x2-3x+2≠0”的充分不必要条件
D.命题p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定为:“?x∈R,x2-3x+2≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+ax,若f(f(x))的最小值与f(x)的最小值相等,则a的取值范围是{a|a≥2或a≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直线l与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$相交于A,B两点,与圆(x-1)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.(1,$\sqrt{6}$)B.(2,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(1,$\sqrt{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),则$\overrightarrow b$等于(  )
A.(-5,5)B.(5,-5)C.(-3,3)D.(3,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sin(2x+$\frac{π}{12}$)的图象经过平移后所得图象关于点($\frac{π}{12}$,0)中心对称,这个平移变换可以是(  )
A.向左平移$\frac{π}{8}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{8}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销量P(件)与单价x(元)之间的关系如图折线所示,该网店与这种商品有关的周开支均为25元.
(I)根据周销量图写出周销量P(件)与单价x(元)之间的函数关系式;
(Ⅱ)写出周利润y(元)与单价x(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,P为双曲线C上一点,Q为双曲线C渐近线上一点,P、Q均位于第一象限,且$\overrightarrow{QP}$=$\overrightarrow{P{F}_{2}}$,$\overrightarrow{Q{F}_{1}}$•$\overrightarrow{Q{F}_{2}}$=0,则双曲线C的离心率为$\sqrt{5}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.$\frac{\sqrt{2}}{3}$πB.2$\sqrt{2}$+2πC.$\frac{2\sqrt{2}}{3}$πD.2$\sqrt{2}$+$\frac{3}{2}$π

查看答案和解析>>

同步练习册答案