精英家教网 > 高中数学 > 题目详情
16.如图,直三棱柱ABC-A1B1C1中,D是AB的中点.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,$AB=2\sqrt{2}$,求异面直线AB1与CD所成角的大小.

分析 (1)连结AC1交A1C于O,连结DO,则DO∥BC1,由此能证明BC1∥平面A1CD.
(2)连结AB1,取BB1中点M,连结DM、CM,则DM∥AB1,从而∠CDM就是所求异面直线所成角(或补角),由此能求出异面直线AB1与CD所成角的大小.

解答 证明:(1)连结AC1交A1C于O,连结DO,
∴DO为△ABC1的中位线,DO∥BC1
又BC1?面A1DC,DO?面A1DC,
故BC1∥平面A1CD.
解:(2)连结AB1,取BB1中点M,连结DM、CM,
则DM是△ABB1的中位线,∴DM∥AB1
∴∠CDM就是所求异面直线所成角(或补角),
∵AA1=AC=CB=2,$AB=2\sqrt{2}$,
∴CM=$\sqrt{5}$,DM=$\sqrt{3}$,CD=$\sqrt{2}$,
∴DM2+CD2=CM2,满足勾股定理,∴∠CDM=90°,
故异面直线AB1与CD所成角为90°.

点评 本题考查线面平行的证明,考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R
(1)当a=1时,求函数f(x)的最小值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,则不等式f(x+1)<3的解集是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx-$\frac{π}{6}$)($\frac{3}{2}$<ω<2),在区间(0,$\frac{2π}{3}$)上(  )
A.既有最大值又有最小值B.有最大值没有最小值
C.有最小值没有最大值D.既没有最大值也没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分图象如图所示.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)的图象沿x轴方向向右平移$\frac{π}{6}$个单位长度,再把横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象,当x∈[-$\frac{π}{12}$,$\frac{π}{3}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m>0,n>0,2m+n=1,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.4B.2$\sqrt{2}$C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f(2)=1,则不等式f(x)<$\frac{1}{2}$x2-1的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如表提供平罗中学某班研究性课题小组在技术改造后制作一玩具模型过程中记录的产量x(个)与相应的花费资y(百元)的几组对照数据
x3 4 5 6
y2.5 3 4 4.5
(1)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)问该小组技术改造后制作10个这种玩具模型估计需要多少资金?
(附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若“?x0∈R,x02+ax0+1<0”是假命题,则实数a的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

同步练习册答案