精英家教网 > 高中数学 > 题目详情
9.已知函数y=f(x)定义在R上,当x>0时,f(x)>1,对任意m,n∈R,f(m+n)=f(m)f(n) 
(1)证明:f(x)在R上单调递增;
(2)若f(2)=9,解方程[f(x)]2+$\frac{1}{9}$f(x+3)-1=f(1).

分析 (1)先证明f(x)>0,然后利用函数单调性的定义进行证明即可
(2)利用赋值法求出f(3)=9,f(0)=1,f(1)=3,将方程进行转化,结合一元二次方程的解法进行求解即可.

解答 解:(1)证明:f(x)在R上单调递增;
∵对任意m,n∈R,f(m+n)=f(m)f(n)
∴$f(x)={f^2}(\frac{x}{2})≥0$,假设存在t,使f(t)=0,则f(x)=f(x-t+t)=f(x-t)f(t)=0,与题设矛盾,所以f(x)>0.
设x1<x2,则x2-x1>0,则f(x2-x1)>1,
则f(x2)-f(x1)=f(x2-x1+x1)-f(x1
=f(x1)(f(x2-x1)-1)>0,
∴f(x2)-f(x1)>0,
∴f(x)为单调递增函数.
(2)若f(2)=9,则f(1+1)=f(1)f(1)=9,则f(1)=3,
令m=n=0,则f(0)=f2(0),
∵f(x)>0,∴f(0)=1,
则f(3)=f(1+2)=f(1)f(2)=3×9=27.
则方程[f(x)]2+$\frac{1}{9}$f(x+3)-1=f(1).
等价为方程[f(x)]2+$\frac{1}{9}$f(x)f(3)-1=3.
即[f(x)]2+$\frac{1}{9}$×27f(x)-4=0,
即[f(x)]2+3f(x)-4=0,
解得f(x)=1或f(x)=-4(舍),
∵f(x)为单调递增函数,且f(0)=1,
∴x=0,即方程的解为x=0.

点评 本题考查函数单调性的判断与应用,考查赋值法的运用,考查学生的推理能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.将函数y=2x的图象向左平移一个单位,得到图象C1,再将C1向上平移1个单位得到图象C2,C2关于直线y=x对称的图象为C3,则C3所对应的函数解析式为y=log2(x-1)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(cos$\frac{3θ}{2}$,sin$\frac{3θ}{2}$),$\overrightarrow{b}$=(cos$\frac{θ}{2}$,-sin$\frac{θ}{2}$),θ∈[0,$\frac{π}{3}$],
(1)求$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$的最大值和最小值;
(2)若|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k∈R),求k的取值范围.
(3)设函数f(x)=$\left\{\begin{array}{l}\frac{1}{a}x,0≤x≤a\\ \frac{1}{1-a}(1-x),a<x≤1\end{array}\right.$a为常数且a∈(0,1).若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知b>a>0,且a+b=1,那么(  )
A.2ab<$\frac{{a}^{4}-{b}^{4}}{a-b}$<$\frac{a+b}{2}$<bB.2ab<$\frac{a+b}{2}$<$\frac{{a}^{4}-{b}^{4}}{a-b}$<b
C.$\frac{{a}^{4}-{b}^{4}}{a-b}$<2ab<$\frac{a+b}{2}$<bD.2ab<$\frac{a+b}{2}$<b<$\frac{{a}^{4}-{b}^{4}}{a-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)是定义在R上的奇函数,且f(x+1)=-f(x),则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高校的自主招生考试分为笔试和面试,笔试有语、数、外、综合共四个科目的考试,面试有时政评论、创新设计共两个项目的考核,笔试中至少通过3科才可进入面试,否则淘汰;面试中只通过一项可获得高考报考降分录取资格,两项都通过可获得保送资格.已知每位考生在笔试中通过每科考试的概率均为$\frac{2}{3}$,在面试中通过每项考核的概率均为$\frac{1}{2}$,且相互独立.
(1)求参加考试的某学生获得降分录取资格的概率;
(2)某中学选送了3名学生参加考试,其中获得降分录取和保送资格的人数之和记为ξ,求ξ的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=a(x-\frac{1}{x})-2lnx(a∈R)$,g(x)=-$\frac{a}{x}$,若至少存在一个x0∈[1,e],使f(x0)>g(x0)成立,则实数a的范围为(  )
A.[$\frac{2}{e}$,+∞)B.(0,+∞)C.[0,+∞)D.($\frac{2}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=cos2x+sinx在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的最小值是$\frac{1-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率
[10.75,10.85)660.06
[10.85,10.95)1590.09
[10.95,11.05)30150.15
[11.05,11.15)48180.18
[11.15,11.25)
[11.25,11.35)84120.12
[11.35,11.45)9280.08
[11.45,11.55)9860.06
[11.55,11.65)10020.02
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?
(Ⅳ)从[11.35,11.45)∪[11.55,11.65)中抽取两个产品,直径分别记作为x,y,求|x-y|<0.1的概率

查看答案和解析>>

同步练习册答案