精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,圆的参数方程为为参数),(1)直线且与圆相切,求直线的极坐标方程;(2)过点且斜率为的直线与圆交于 两点,若,求实数的值.

【答案】(1).(2)-3.

【解析】试题分析:(1)先根据直线与圆相切求直线的直角坐标方程(注意斜率不存在的情形),再利用 将直角坐标方程化为极坐标方程(2)设直线的参数方程,根据参数几何意义得,将直线的参数方程代入圆的方程,并利用韦达定理得,解方程可得实数的值.注意满足判别式大于零.

试题解析:解:(1)的直角坐标为,圆的直角坐标方程为

设直线,即

因为直线与圆相切,所以,解得

此时直线的方程为

若直线的斜率不存在时,直线的方程为

所以直线的极坐标方程为.

(2)将直线的参数方程时参数)代入圆的方程

得:

,则,因为,所以

所以,解得

知,所求的值为-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1AP点.

(1)求P点的轨迹C的方程;

(2)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,

kEGkFH=-,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校课改实行选修走班制,现有甲,乙,丙,丁四位学生准备选修物理,化学,生物三个科目.每位学生只选修一个科目,且选修其中任何一个科目是等可能的.
(1)恰有2人选修物理的概率;
(2)选修科目个数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我人口、钱粮、 水文、天文、地震等资料的记录.近几年,雾霾来袭,对某市该年11月份的天气情况进行统计,结果如下:表一

日期

天气

日期

天气

由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.

下表是一个调査机构对比以上两年11月份(该年不限行 天、次年限行天共 天)的调查结果:

表二

不限行

限行

总计

没有雾霾

有雾霾

总计

(1)请由表一数据求 ,并求在该年11月份任取一天,估计该市是晴天的概率;

(2)请用统计学原理计算若没有 的把握认为雾霾与限行有关系,则限行时有多少天没有雾霾?

(由于不能使用计算器,所以表中数据使用时四舍五入取整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一个解.
(1)求实数a的值及函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)若关于x的方程f(x)=b在区间(0, )上恰有三个不相等的实数根x1 , x2 , x3 , 直接写出实数b的取值范围及x1+x2+x3的取值范围(不需要给出解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx2+cx+d是实数集R上的偶函数,并且f(x)<0的解为(﹣2,2),则 的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(log2x﹣2)(log4x﹣
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得10分,摸出黑球,得5分,则3次摸球所得总分至少是25分的概率是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数 是奇函数.
(1)求实数a,b的值;
(2)判断f(x)在(﹣∞,+∞)上的单调性;
(3)若f(k3x)+f(3x﹣9x+2)>0对任意x≥1恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案