精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=(
A.0
B.﹣100
C.100
D.10200

【答案】B
【解析】解:∵ ,由an=f(n)+f(n+1)
=(﹣1)nn2+(﹣1)n+1(n+1)2
=(﹣1)n[n2﹣(n+1)2]
=(﹣1)n+1(2n+1),
得a1+a2+a3+…+a100=3+(﹣5)+7+(﹣9)+…+199+(﹣201)=50×(﹣2)=﹣100.
故选B
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的有 . (写出所有正确说法的序号) ①已知关于x的不等式mx2+mx+2>0的角集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn , 则Sn、S2n﹣Sn、S3n﹣S2n也构成等比数列.
③已知函数 (其中a>0且a≠1)在R上单调递减,且关于x的方程 恰有两个不相等的实数解,则
④已知a>0,b>﹣1,且a+b=1,则 + 的最小值为
⑤在平面直角坐标系中,O为坐标原点,| |=| |=| |=1, + + = ,A(1,1),则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cosxC2y=sin2x+),则下面结论正确的是(  )

A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中 是自然对数的底数.

(1)当时,求曲线处的切线方程;

2求函数的单调减区间;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题中

非零向量满足,则的夹角为

0的夹角为锐角的充要条件;

必定是直角三角形;

④△ABC的外接圆的圆心为O,半径为1,若,,则向量在向量方向上的投影为.

以上命题正确的是 __________ (注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点A,B,C,D在同一个球的球面上,AB=BC=2,AC=2 ,若四面体ABCD体积的最大值为 ,则该球的表面积为(
A.
B.8π
C.9π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑, 平面 ,三棱锥的四个顶点都在球的球面上,则球的表面积为( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

1)分别求曲线的极坐标方程和曲线的直角坐标方程;

2)设直线交曲线 两点,交曲线 两点,求线段的长.

查看答案和解析>>

同步练习册答案