精英家教网 > 高中数学 > 题目详情
用一个平面去截一个正四棱柱,截法不同,所得截面形状不一定相同,在各种截法中,边数最多的截面的形状为                                  (   )
A.四边形B.五边形C.六边形D.八边形
C
分析:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.
解答:解:∵用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形,
∴最多可以截出六边形,即截面的边数最多是6.
故选C.
点评:本题考查四棱柱的截面.考查的知识点为:截面经过四棱柱的几个面,得到的截面形状就是几边形.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

把边长为a的正方形卷成圆柱形,则圆柱的体积是(  )
      B         C          D 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足=λ∈(0,1).

(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,两条异面直线AB,CD与三个平行平面α,β,γ分别相交于A,E,B及
C,F,D,又AD、BC与平面β的交点为H,G.
求证:四边形EHFG为平行四边形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,在三棱锥中,三条棱两两垂直,且 与平面角,与平面角.

(1)由该棱锥相邻的两个面组成的二面角中,指出所有的直二面角;
(2)求与平面所成角的大小;
(3)求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方形中,.现将沿折起,使平面平面,设中点,则异面直线所成角的余弦值为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知四面体ABCD中,DA=DB=DC=,且DA,DB,DC两两互相垂直,
点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线
BC所成角的余弦值的取值范围是             。            
                   

查看答案和解析>>

同步练习册答案