精英家教网 > 高中数学 > 题目详情
1+i
i
+(1+
3
i)2=a+bi(a,b∈R),则a-b=(  )
A、2
3
B、-2
3
C、2+2
3
D、2
3
-2
分析:化简复数,利用复数相等,求得a、b即可.
解答:解:
1+i
i
+(1+
3
i)2=1-i-2+2
3
i
=-1+(2
3
-1)i=a+bi,
则a=-1,b=2
3
-1,故a-b=-2
3

故选B
点评:本题考查复数代数形式的混合运算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=λan-1(λ为常数,n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在.请说明理由
(III)当λ=2时,若数列{bn}满足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州模拟)设函数f(x)=loga
1+x
1-x
(a>0且a≠1)

(I)求f(m)+f(n)-f(
m+n
1+mn
)
的值;
(II)若关于x的方程loga
t
(1-x)(2x2-5x+5)
=f(x)
在x∈[0,1)上有实数解,求实数t的取值范围.
(III)若f(x)的反函数f-1(x)的图象过点(1,
1
3
)
,求证:f-1(1)+f-1(2)+f-1(3)+…+f-1(n)>n-
47
30

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都一模)已知在4支不同编号的枪中有3支已经试射校正过,1支未经试射校正.某射手若使用其中校正过的枪,每射击一次击中目标的概率为
4
5
;若使用其中未校正的枪,每射击一次击中目标的概率为
1
5
,假定每次射击是否击中目标相互之间没有影响.
(I)若该射手用这3支已经试射校正过的枪各射击一次,求目标被击中的次数为奇数的概率;
(II)若该射手用这4支抢各射击一次,设目标被击中的次数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省威海市高三第一次模拟考试理科数学试卷 题型:解答题

(本小题满分14分)已知函数

(I)若曲线在点处的切线与直线垂直,求a的值;

(II)若在区间单调递增,求a的取值范围;

(III)若—1<a<3,证明:对任意都有>1成立.

 

查看答案和解析>>

同步练习册答案