(本小题满分13分)已知函数f (x) =
(1)若函数f (x)在其定义域内为单调函数,求实数a的取值范围;
(2)若函数f (x)的图象在x = 1处的切线垂直于y轴,数列{}满足
.
①若a1≥3,求证:an≥n + 2;
②若a1 = 4,试比较的大小,并说明你的理由.
①a≥1或a≤0.②<
【解析】(1)∵f (1) = a – b = 0,∴a = b,∴f′(x) = .要使函数f (x)在其定义域内为单调函数,则 (0,+∞)内(x) = 恒大于等于零,或恒小于等于零.
由得而 由得 而 经验证a=0及a=1均合题意,故
∴所求实数a的取值范围为a≥1或a≤0. ………………………5分
(2)∵函数f (x)的图象在x = 1处的切线的斜率为0,∴f′(1) = 0,即a + a – 2 = 0,解得a = 1,∴f′(x) = ,∴an + 1 = f′……7分
①用数学归纳法证明:(i)当n = 1时,a1≥3 = 1 + 2,不等式成立;(ii)假设当n = k时不等式成立,即那么ak – k≥2>0,∴ak + 1 = ak (ak – k) + 1≥2 (k + 2) + 1 = (k + 3) + k + 2>k + 3,也就是说,当n = k + 1时,ak + 1≥(k + 1) + 2.根据(i)和(ii),对于所有n≥1,有an≥n + 2. ……………………………………10分
②由an + 1 = an (an – n) + 1及①,对k≥2,有ak = ak – 1 (ak–1 – k + 1) + 1≥ak –1 (k – 1 + 2 – k + 1) + 1 = 2ak–1 + 1,∴ak + 1≥2 (ak–1 + 1)≥22 (ak – 2 + 1)≥23 (ak –3 + 1)≥…≥2k–1 (a1 + 1)而,于是当k≥2时,
…………………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com