精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且.

1)求数列的通项公式;

2)设数列的前n项和为,求证:当时,.

【答案】(1)(2)证明见解析

【解析】

(1)法一:计算出数列前4项,猜想:,用数学归纳法证明即可;法二:所给等式化简为 所以是等差数列,首项为2,公差为1,求出通项公式即可得解;(2) 先证明时,

,再证明,即可得证.

解:(1)法一:,且

同样可求得

猜想:

以下用数学归纳法证明

①当时,,符合

②假设时,

时,,即

符合

综上:.

法二:由

是等差数列,首项为2,公差为1

.

2)当时,

法一:先证明时,

,则

为减函数,

时,.

时,

时,

时,.

法二:

要证明

即证

得:

时,

时,.

法三:由法二知即证

时,成立,

时,

时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若同时满足以下条件:

在D上单调递减或单调递增;

存在区间,使 上的值域是,那么称为闭函数.

(1)求闭函数符合条件的区间

(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王老师是高三的班主任,为了在寒假更好的督促班上的学生完成学习作业,王老师特地组建了一个QQ群,群的成员由学生、家长、老师共同组成.已知该QQ群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该QQ群人数的最小值为(

A.20B.22C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)设函数,其中是自然对数的底数,判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个半径为1千米的扇形景点的平面示意图,.原有观光道路OC,且.为便于游客观赏,景点管理部门决定新建两条道路PQPA,其中P在原道路OC(不含端点OC)上,Q在景点边界OB上,且,同时维修原道路的OP段,因地形原因,新建PQ段、PA段的每千米费用分别是万元、万元,维修OP段的每千米费用是万元.

1)设,求所需总费用,并给出的取值范围;

2)当P距离O处多远时,总费用最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为其前项的和,满足.

1)求数列的通项公式;

2)设数列的前项和为,数列的前项和为,求证:当

3)已知当,且时有,其中,求满足的所有的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点构成一个等边三角形,且直线与圆相切.

1)求椭圆的方程;

2)已知过椭圆的左顶点的两条直线分别交椭圆两点,且,求证:直线过定点,并求出定点坐标;

3)在(2)的条件下求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身馆在201978两月推出优惠项目吸引了一批客户.为预估202078两月客户投入的健身消费金额,健身馆随机抽样统计了201978两月100名客户的消费金额,分组如下:(单位:元),得到如图所示的频率分布直方图:

1)请用抽样的数据预估202078两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);

2)若把201978两月健身消费金额不低于800元的客户,称为健身达人,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为健身达人与性别有关?

健身达人

非健身达人

总计

10

30

总计

3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.

方案一:每满800元可立减100元;

方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7.

若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

同步练习册答案