精英家教网 > 高中数学 > 题目详情
抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为(  )
A、2B、3C、4D、5
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先根据抛物线的方程求得准线的方程,进而利用点A的纵坐标求得点A到准线的距离,进而根据抛物线的定义求得答案.
解答: 解:依题意可知抛物线的准线方程为y=-1,
∴点A到准线的距离为4+1=5,
根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,
∴点A与抛物线焦点的距离为5,
故选:D
点评:本题主要考查了抛物线的定义的运用.考查了学生对抛物线基础知识的掌握.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2ln(ax)(a>0).
(1)a=e时,求f(x)在x=1处的切线方程;
(2)若f′(x)≤x2对任意的x>0恒成立,求实数a的取值范围;
(3)当a=1时,设函数g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1,求证:x1•x2<(x1+x24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|≠0,且关于x的函数f(x)=
1
6
x3+
1
2
|
a
|x2+
a
b
x+2014在R上有极值,则
a
b
的夹角θ的取值范围为(  )
A、(0,
π
3
]
B、(
π
2
,π]
C、(
π
3
,π]
D、(
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
x+1

(1)判断函数f(x)在区间[0,+∞)上的单调性,并用定义证明;
(2)解关于x的不等式:f(x)<a+x(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一曲线是与两个定点A(-3,0)、B(3,0)的距离之比为
1
2
的点的轨迹,求此曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log2
x
4
•log2
x
8
(x∈[
1
4
,8]的最大值和最小值并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(Ⅰ)在给定的坐标系中,直接作出函数f(x)的图象;
(Ⅱ)根据图象指出f(x)的单调递减区间;
(Ⅲ)根据图象写出不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图中的正(主)视图、侧(左)视图、俯视图均是大小形状完全相同的图形,那么这个几何体可能是(  )
A、球B、圆柱C、三棱柱D、圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:4x+2x-1=11.

查看答案和解析>>

同步练习册答案