精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆)与抛物线:的一个公共点,且椭圆与抛物线具有一个相同的焦点

(Ⅰ)求椭圆及抛物线的方程

(Ⅱ)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值.

【答案】(Ⅰ)椭圆的方程为,抛物线的方程为(Ⅱ)见解析.

【解析】

(Ⅰ)根据是椭圆)与抛物线:的一个公共点,可求得,从而可得相同的焦点的坐标,结合,即可求得,从而可得椭圆及抛物线的方程;(Ⅱ)由题可知直线斜率存在,设直线的方程,当时,求出,当时,直线的方程为,结合韦达定理及弦长公式求得,表示出,通过换元及二次函数思想即可求得四边形面积的最小值.

(Ⅰ)抛物线一点

,即抛物线的方程为

在椭圆

,结合(负舍),

椭圆的方程为抛物线的方程为.

(Ⅱ)由题可知直线斜率存在,设直线的方程

①当时,直线的方程,故

②当时,直线的方程为.

由弦长公式知 .

同理可得.

.

,则时,

综上所述:四边形面积的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查中国及美国的高中生在“家”、“朋友聚集的地方”、“个人空间”这三个场所中感到最幸福的场所是哪个,从中国某城市的高中生中随机抽取了55人,从美国某城市高中生中随机抽取了45人进行答题。中国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占,美国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占

(1)请根据以上调查结果将下面的2X2列联表补充完整,并判断能否有95%的把握认为恋家(在家里感到最幸福)与国别有关;

在家里感到最幸福

在其他场所感到最幸福

总计

中国高中生

美国高中生

总计

(2)从被调查的不“恋家”的美国高中生中,用分层抽样的方法随机选出4人接受进一步调查,再从4人中随机选出2人到中国交流学习,求2人中含有在“个人空间”感到最幸福的高中生的概率。

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.8

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x-P2-x,则下列结论正确的是(  )

A. 为奇函数且为R上的减函数

B. 为偶函数且为R上的减函数

C. 为奇函数且为R上的增函数

D. 为偶函数且为R上的增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图象在处的切线与直线平行.

(1)求函数的极值;

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于( )

A. 2个球不都是红球的概率B. 2个球都是红球的概率

C. 至少有1个红球的概率D. 2个球中恰好有1个红球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大豆是我国主要的农作物之一,因此,大豆在农业发展中占有重要的地位,随着农业技术的不断发展,为了使大豆得到更好的种植,就要进行超级种培育研究.某种植基地培育的“超级豆种子进行种植测试:选择一块营养均衡的可种植株的实验田地,每株放入三粒“超级豆种子,且至少要有一粒种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆.已知每粒豆苗种子成活的概率为假设种子之间及外部条件一致,发芽相互没有影响).

(Ⅰ)求恰好有3株成活的概率

(Ⅱ)记成活的豆苗株数为,收成为求随机变量分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为回馈顾客,某商场拟通过摸球兑奖的方式对位顾客进行奖励,规定:每位顾客从一个装有个标有面值的球的袋中一次性随机摸出个球,球上所标的面值之和为该顾客所获的奖励额.

(1)若袋中所装的个球中有个所标的面值为元,其余个均为元,求顾客所获的奖励额的分布列及数学期望;

(2)商场对奖励总额的预算是元,并规定袋中的个球只能由标有面值为元和元的两种球组成,或标有面值元和元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线具有性质:若是双曲线左、右顶点,为双曲线上一点,且在第一象限.记直线的斜率分别为,那么之积是与点位置无关的定值.

(1)试对椭圆,类比写出类似的性质(不改变原有命题的字母次序),并加以证明.

(2)若椭圆的左焦点,右准线为,在(1)的条件下,当取得最小值时,求的垂心轴的距离.

查看答案和解析>>

同步练习册答案