【题目】如图,在三棱柱ABC﹣A1B1C1中(底面△ABC为正三角形),A1A⊥平面ABC,AB=AC=2,,D是BC边的中点.
(1)证明:平面ADB1⊥平面BB1C1C.
(2)求点B到平面ADB1的距离.
【答案】(1)证明见解析(2)
【解析】
(1)证明AD⊥BC,BB1⊥AD,推出AD⊥平面BB1C1C,即可证明平面ADB1⊥平面BB1C1C;
(2)由,转化求解点B到平面ADB1的距离即可.
(1)∵AB=AC,D为BC的中点,
∴AD⊥BC.
又BB1⊥平面ABC,AD平面ABC,
∴BB1⊥AD.
又BC∩BB1=B,
∴AD⊥平面BB1C1C.
又AD平面ADB1,
∴平面ADB1⊥平面BB1C1C.
(2)由(1)知,AD⊥平面BB1C1C,B1D平面BB1C1C,
∴AD⊥B1D.,
∵,B1D=2,
∴,
.
设点B到平面ADB1的距离为d,
由,得,
即,
∴d,即点B到平面ADB1的距离为.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若AB,求实数m的取值范围;
(3)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是a的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为,类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一平面与空间四边形的对角线,都平行,且交空间四边形的边,,,分别于,,,.
(1)求证:四边形为平行四边形;
(2)若是边的中点,,,异面直线与所成的角为60°,求线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体ABCD﹣A1B1C1D1为正方体,则下面结论正确的是( )
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.异面直线AD与CB1所成的角为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1各条棱长均为4,且AA1⊥平面ABC,D为AA1的中点,M,N分别在线段BB1和线段CC1上,且B1M=3BM,CN=3C1N,
(1)证明:平面DMN⊥平面BB1C1C;
(2)求三棱锥B1﹣DMN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(Ⅰ)若,求曲线的方程;
(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐进线上;
(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求与面积之和的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com