精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABCA1B1C1中(底面△ABC为正三角形),A1A⊥平面ABCAB=AC=2DBC边的中点.

1)证明:平面ADB1⊥平面BB1C1C

2)求点B到平面ADB1的距离.

【答案】(1)证明见解析(2)

【解析】

1)证明ADBCBB1AD,推出AD⊥平面BB1C1C,即可证明平面ADB1⊥平面BB1C1C;

2)由,转化求解点B到平面ADB1的距离即可.

1)∵AB=ACDBC的中点,

ADBC

BB1⊥平面ABCAD平面ABC

BB1AD

BCBB1=B

AD⊥平面BB1C1C

AD平面ADB1

∴平面ADB1⊥平面BB1C1C

2)由(1)知,AD⊥平面BB1C1CB1D平面BB1C1C

ADB1D

B1D=2

设点B到平面ADB1的距离为d

,得

d,即点B到平面ADB1的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)当m=-1时,求AB

(2)若AB,求实数m的取值范围;

(3)若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是a的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为,类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响

1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

2)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一平面与空间四边形的对角线都平行,且交空间四边形的边分别于.

1)求证:四边形为平行四边形;

2)若是边的中点,,异面直线所成的角为60°,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDA1B1C1D1为正方体,则下面结论正确的是(  )

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.异面直线ADCB1所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1各条棱长均为4,且AA1⊥平面ABCDAA1的中点,MN分别在线段BB1和线段CC1上,且B1M3BMCN3C1N

1)证明:平面DMN⊥平面BB1C1C

2)求三棱锥B1DMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(Ⅰ)若,求曲线的方程;

(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐进线上;

(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积之和的最大值.

查看答案和解析>>

同步练习册答案