精英家教网 > 高中数学 > 题目详情
已知不等式
1
2
+
1
3
+
+
1
n
1
2
[log2n]
,其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1=b(b>0),an
nan-1
n+an-1
,n=2,3,4,…

(Ⅰ)证明an
2b
2+b[log2n]
,n=3,4,5,…

(Ⅱ)试确定一个正整数N,使得当n>N时,对任意b>0,都有an
1
5
分析:(Ⅰ)当n≥2时,0<an
nan-1
n+an-1
,可得
1
an
-
1
an-1
1
n
,于是有n取2,3,…所有不等式两边相加,即可得到
1
an
-
1
a1
1
2
[log2n]
,利用a1=b,即可得到结论;
(Ⅱ)an
2b
2+b[log2n]
2
[log2n]
,令
2
[log2n]
1
5
,由此可得结论.
解答:(Ⅰ)证明:当n≥2时,0<an
nan-1
n+an-1
,∴
1
an
1
an-1
+
1
n

1
an
-
1
an-1
1
n
,于是有
1
a2
-
1
a1
1
2
1
a3
-
1
a2
1
3
,…,
1
an
-
1
an-1
1
n

所有不等式两边相加可得
1
an
-
1
a1
1
2
+
1
3
+…+
1
n

由已知不等式知,当n≥3时有
1
an
-
1
a1
1
2
[log2n]

∵a1=b,∴
1
an
1
 b
+
1
2
[log2n]

an
2b
2+b[log2n]
,n=3,4,5,…

(Ⅱ)解:an
2b
2+b[log2n]
2
[log2n]
,令
2
[log2n]
1
5

则有log2n≥[log2n]>10,⇒n>210=1024
故取N=1024,可使当n>N时,都有an
1
5
点评:本题考查新定义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式
1
2
+
1
3
+…+
1
n
1
2
[log2n]
,其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1=b(b>0),an
nan-1
n+an-1
,n=2,3,4,….证明:an
2b
2+b[log2n]
,n=3,4,5,….

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式为
1
3
3x<27
,则x的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+2>0的解集是{x|-
1
2
<x<
1
3
},则b-a的值等于(  )

查看答案和解析>>

科目:高中数学 来源:湖北 题型:解答题

已知不等式
1
2
+
1
3
+…+
1
n
1
2
[log2n]
,其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1=b(b>0),an
nan-1
n+an-1
,n=2,3,4,….证明:an
2b
2+b[log2n]
,n=3,4,5,….

查看答案和解析>>

同步练习册答案