【题目】设,函数.
(1)若,求曲线在处的切线方程;
(2)若无零点,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);
(3)若为R上的奇函数,则也是R上的奇函数;
(4)t为常数,若对任意的,都有则关于对称。
其中所有正确的结论序号为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线C1:-=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A. B. -1 C. +1 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间 | |||||
频数 | 20 | 40 | 80 | 50 | 10 |
分值区间 | |||||
频数 | 45 | 75 | 90 | 60 | 30 |
男性用户:
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列列联表,并回答是否有的把握认为性别对手机的“认可”有关:
女性用户 | 男性用户 | 合计 | |
“认可”手机 | |||
“不认可”手机 | |||
合计 |
附:
0.05 | 0.01 | |
3.841 | 6635 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】沭阳县某水果店销售某种水果,经市场调查,该水果每日的销售量(单位:千克)与销售价格近似满足关系式,其中为常数,已知销售价格定为元千克时,每日可销售出该水果千克.
(1)求实数的值;
(2)若该水果的成本价格为元千克,要使得该水果店每日销售该水果获得最大利润,请你确定销售价格的值,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,抛物线y2= (a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln x++ax(a是实数),g(x)=+1.
(1)当a=2时,求函数f(x)在定义域上的最值;
(2)若函数f(x)在[1,+∞)上是单调函数,求a的取值范围;
(3)是否存在正实数a满足:对于任意x1∈[1,2],总存在x2∈[1,2],使得f(x1)=g(x2)成立? 若存在,求出a的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,平面PAC⊥平面ABCD.
(1)证明:ED∥平面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com