精英家教网 > 高中数学 > 题目详情

【题目】设函数的定义域为,若满足条件:存在区间,使上的值域为,则称不动函数”.

1)求证:函数不动函数

2)若函数不动函数,求实数的取值范围.

【答案】1)见解析;(2.

【解析】

1)可判断上单调递增,取,得出;取,得出.即在区间上的值域为,即得出不动函数

2)可判断上单调递增,根据是“不动函数”可得出,存在使得函数在区间上的值域为.从而得出方程上至少有两个不相等的实数根.即上至少有2个解,等价于的图像至少有2个交点,研究函数图像即可求出的取值范围.

1)要证:存在区间使得上的值域为

又由于是一个单调递増的函数,

故只需证存在实数满足,且有

观察得

即存在符合题意,

故函数不动函数”.

2)由题,定义域为,即存在实数满足,使得在区间上的值域为

由于在定义域上单调递増,从而有

该方程组等价于方程有至少2个解,

上至少有2个解,

的图像至少有2个交点,

,则,且,从而有

,配方得

,作出的图像可知,时有两个交点,

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如下表所示:

平均每天使用手机超过3小时

平均每天使用手机不超过3小时

合计

男生

25

5

30

女生

9

11

20

合计

34

16

50

(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?

(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X的分布列和数学期望.

参考公式:

P(K2≥k0)

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 两两垂直, ,且 .

(1)求二面角的余弦值;

(2)已知点为线段上异于的点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=4y

(1)求抛物线在点P(2,1)处的切线方程;

(2)若不过原点的直线l与抛物线交于AB两点(如图所示),且OAOB,|OA|=|OB|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一研究性学习小组对春季昼夜温差大小与某大豆种子发芽多少之间的关系进行分析研究,他们分别记录了41日至45日的每天昼夜温差与实验室每天每100颗种子的发芽数,得到如下数据:

日期

41

42

43

44

45

温差摄氏度

8

12

13

11

10

发芽数

18

26

30

25

20

该学习组所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.

1)求选取的2组数据恰好是相邻2天的数据的概率;

2)若选取的是41日与45日这2组数据做检验,请根据42日至44日这3组数据求出关于的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)所得的线性回归方程是否可靠?

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面,的中点,是线段上的一动点.

(1)当是线段的中点时,证明:平面

(2)当求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

(1)求这100位留言者年龄的平均数和中位数;

(2)学校从参加调查的年龄在的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在的留言者每人一部价值1000元的手机,年龄在的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省为了确定合理的阶梯电价分档方案,对全省居民用量进行了一次抽样调查,得到居民月用电量(单位:度)的频率分布直方图(如图所示),求:

1)若要求80%的居民能按基本档的电量收费,则基本档的月用电量应定为多少度?

2)由频率分布直方图可估计,居民月用电量的众数、中位数和平均数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的值域;

2)设 ,求函数的最小值

3)对(2)中的,若不等式对于任意的时恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案