精英家教网 > 高中数学 > 题目详情

(本题满分14分)
如图,在底面是直角梯形的四棱锥S-ABCD中, 


(1)求四棱锥S-ABCD的体积;
(2)求证:


(1)
(2)根据题意中的线面垂直,得到线线垂直, 同时能根据来得到面面垂直的证明。

解析试题分析:(1)解:

(2)证明:
     

 

 
考点:面面垂直以及体积的求解
点评:解决的关键是能熟练的运用空间中的点线面的位置关系来求证,同时结合公式法得到体积的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求证:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.

(Ⅰ) 证明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在多面体中,平面∥平面 ⊥平面,,
 ,

(Ⅰ)求证:平面;
(Ⅱ)求证:∥平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。

(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EFEFAB,,HBC的中点.求证:FH∥平面EDB.

查看答案和解析>>

同步练习册答案