精英家教网 > 高中数学 > 题目详情

函数数学公式的定义域为(0,1](a为实数).
(1)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(2)若f(x)>5在定义域上恒成立,求a的取值范围.

解:(1)∵函数y=f(x)在定义域上是减函数,
∴任取x1,x2∈(0,1],x1<x2,恒有f(x1)>f(x2),
>0

∵x1-x2<0,x1x2>0
即a<-2x1x2恒成立,
∵1>x1x2>0
∴a≤-2
(2)f(x)>5在定义域上恒成立,
在x∈(0,1]上恒成立
∵0<x≤1
∴2x2-a>5x
∴a<2x2-5x在x∈(0,1]上恒成立
∵2x2-5x=2
∴函数y=2x2-5x在(0,1]上单调减
∴x=1时,函数取得最小值-3
∴a<-3.
分析:(1)利用单调性的定义,根据函数y=f(x)在定义域上是减函数,可得不等式a<-2x1x2恒成立,从而可求a的取值范围;
(2)f(x)>5在定义域上恒成立,即(x∈(0,1])恒成立,即a<2x2-5x(x∈(0,1])恒成立,求出右边对应的函数在定义域内的最小值,即可求得a的取值范围.
点评:本题重点考查函数的单调性,考查二次函数的最值,解题的关键是利用单调性的定义,利用分离参数法解决恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

幂函数的图象经过点P(4,
12
),则此幂函数的定义域为
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为(0,+∞),且单调递增,满足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)证明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省盐城市时杨中学高三数学专项复习:集合与函数(解析版) 题型:解答题

函数的定义域为(0,1](a为实数).
(Ⅰ)当a=-1时,求函数y=f(x)的值域;
(Ⅱ)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(Ⅲ)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值.

查看答案和解析>>

科目:高中数学 来源:《函数概念与基本处等函数I》2013年广东省广州大学附中高考数学二轮复习检测(解析版) 题型:解答题

函数的定义域为(0,1](a为实数).
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届北京市高一上学期期中考试数学试卷 题型:选择题

若函数的定义域为(0,2),则函数的定义域是

       A. (0,2)                B. (-1,0)                C. (-4,0)             D. (0,4)

 

查看答案和解析>>

同步练习册答案