精英家教网 > 高中数学 > 题目详情

【题目】如图,是曲线上的点,轴正半轴上的点,且均为斜边在轴上的等腰直角三角形(为坐标原点).

1)写出之间的等量关系,以及之间的等量关系;

2)猜测并证明数列的通项公式;

3)设,集合,若,求实常数的取值范围.

【答案】1;(2,证明见解析;(3.

【解析】

1)依题意利用等腰直角三角形的性质可得,.

2)由,即,猜测,再用数学归纳法进行证明.

3)用裂项法求得的值为,由函数在区间上单调递增,且,求得,再由,由,有,或,由此求得实常数的取值范围.

1)依题意利用等腰直角三角形的性质可得,.

2)由

,猜测.

证明:①当时,可求得,命题成立.

②假设当时,命题成立,即有

则当时,由归纳假设及

解得,(不合题意,舍去),

即当时,命题成立.

综上所述,对所有.

3

.

因为函数在区间上单调递增,且

所以.

,有,或

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=BC=AC=2,则此三棱锥外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其中,,数列{bn}满足b1=2bn+1=2bn

1)求数列的通项公式;

2)是否存在自然数,使得对于任意,有恒成立?若存在,求出的最小值;

3)若数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为了解四年级学生的家庭作业用时情况,从本校四年级随机抽取了一批学生进行调查,并绘制了学生作业用时的频率分布直方图,如图所示.

(1)估算这批学生的作业平均用时情况;

(2)作业用时不能完全反映学生学业负担情况,这与学生自身的学习习惯有很大关系如果用时四十分钟之内评价为优异,一个小时以上为一般,其它评价为良好.现从优异和良好的学生里面用分层抽样的方法抽取300人,其中女生有90人(优异20人).请完成列联表,并根据列联表分析能否在犯错误的概率不超过0.05的前提下认为学习习惯与性别有关系?

男生

女生

合计

良好

优异

合计

附:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

1)若直线过定点,且与圆C相切,求的方程.

2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若对于任意的,当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各名,将男性、女性使用微信的时间分成组:,,,,分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图估计女性使用微信的平均时间;

(2)若每天玩微信超过小时的用户列为微信控,否则称其为非微信控,请你根据已知条件完成的列联表,并判断是否有的把握认为微信控性别有关?

参考公式:,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4

1)求椭圆的方程;

2)若是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值,并求取得最大值时直线的方程.为坐标原点)

查看答案和解析>>

同步练习册答案