精英家教网 > 高中数学 > 题目详情
16.在△ABC中,$\overrightarrow{BC}•\overrightarrow{AC}-\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AC}{|^2}$,则△ABC的形状一定是(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 利用向量的模的平方是向量的平方,再用向量的运算法则得到$\overrightarrow{AC}$•2$\overrightarrow{BA}$=0,据向量的数量积为0两向量垂直得三角形为直角三角形.

解答 解:∵$\overrightarrow{BC}•\overrightarrow{AC}-\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AC}{|^2}$,
∴$\overrightarrow{AC}$($\overrightarrow{BC}$-$\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
∴$\overrightarrow{AC}$•2$\overrightarrow{BA}$=0,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BA}$,
∴∠A=90°.
故选:C.

点评 本题考查向量模的性质,向量的运算法则,向量垂直的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且Sn=2an-1,n∈N+
(1)求数列{an}的通项公式;
(2)若bn=log2a2n,求数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平面四边形ABCD中,DA⊥AB,DE=2,EC=$\sqrt{7}$,EA=3,∠ADC=$\frac{2π}{3}$,∠BEC=$\frac{π}{2}$.
(1)求sin∠CED的值;
(2)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}中a1=19,a4=13,Sn为{an}的前n项和.
(Ⅰ)求通项an及Sn
(Ⅱ)令cn=bn-an,且数列{cn}是前三项为x,3x+3,6x+6的等比数列,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-x2+lnx.
(1)求出函数f(x)的导函数;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.极坐标方程θ=$\frac{π}{6}$(ρ≥0)表示的曲线是一条(  )
A.射线B.直线
C.垂直于极轴的直线D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:
①f(2014)+f(-2015)=0;
②函数f(x)在定义域上是周期为2的函数;
③直线y=x与函数f(x)的图象有2个交点;
④函数f(x)的值域为(-1,1).
其中正确的是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过点P(3,2)的直线l与x轴和y轴正半轴分别交于A、B.
(1)若P为AB的中点时,求l的方程;
(2)若|PA|•|PB|最小时,求l的方程;
(3)若△AOB的面积S最小时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等差数列{an}中,an>0,且a1+a2+a3+…+a10=30,则a5a6的最大值是9.

查看答案和解析>>

同步练习册答案