精英家教网 > 高中数学 > 题目详情
11.求定积分的值$\underset{\stackrel{3}{∫}}{-1}$(3x+1)dx=16.

分析 直接利用定积分的运算法则求解即可.

解答 解:${∫}_{-1}^{3}$(3x+1)dx=($\frac{3}{2}{x}^{2}+x$)${|}_{-1}^{3}$=($\frac{3}{2}×9+3$)-($\frac{3}{2}×1-1$)=16.
故答案为:16.

点评 本题考查定积分的应用,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若sin(α+β)=p,sin(α-β)=q,则$\frac{tanα}{tanβ}$=$\frac{p+q}{p-q}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中指数函数的个数为(  )
①y=($\frac{1}{2}$)x-1;②y=2•3x;③y=ax(a>0且a≠1);④y=1x;⑤y=($\frac{1}{2}$)2x-1.
A.1个B.2个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知2sin2α=1+cos2α,则tan2α=(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{4}{3}$或0D.$-\frac{4}{3}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f($\frac{1}{x}$)=$\frac{1}{1+x}$,则函数f(x)的解析式是 (  )
A.$\frac{x}{x+1}$ (x≠0)B.1+xC.$\frac{1+x}{x}$D.$\frac{1}{x+1}$(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若变量x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤2}\end{array}\right.$的z=2x+y的取值范围是(  )
A.[3,4]B.[2,4]C.[2,3]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\frac{2x-y}{x+y}=\frac{2}{3}$,则$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(π-x)sin($\frac{π}{2}$-x)+cos2x
(1)求函数f(x)的最小正周期;
(2)当x∈[-$\frac{π}{8}$,$\frac{3π}{8}$]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知公比为q的等比数列{an}中,a5+a9=$\frac{1}{2}$q,则a6(a2+2a6+a10)的值为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案