精英家教网 > 高中数学 > 题目详情
如图,斜三棱柱ABC-A'B'C'中,底面是边长为a的正三角形,侧棱长为b,侧棱AA'与底面相邻两边AB,AC都成45°角.

(Ⅰ)求此斜三棱柱的表面积.
(Ⅱ)求三棱锥B'-ABC的体积.
(1)(+1)ab+a2;(2).

试题分析:(1)要求表面积,最难求的是面的面积,要分析它的特征,如图,过A'作A'D⊥平面ABC于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,连接A'E,A'F,AD.由题意可知∠A'AE=∠A'AF=45°,AA'=AA',于是Rt△A'AE≌Rt△A'AF.,因此A'E=A'F,从而可得DE=DF.故AD平分∠BAC,又∵AB=AC,∴BC⊥AD.故BC⊥AA'.∵AA'∥BB',∴BC⊥BB'.因此四边形BCC'B'是矩形,故斜三棱柱的侧面积为2×a×bsin45°+ab=(+1)ab.又∵斜三棱柱的底面积为2×a2=a2,∴斜三棱柱的表面积为(+1)ab+a2.(2)求B'-ABC的体积,要求出底面ABC的面积,高的求解根据
所以.
试题解析:

(1)如图,过A'作A'D⊥平面ABC于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,连接A'E,A'F,AD.
由题意可知∠A'AE=∠A'AF=45°,AA'=AA',于是Rt△A'AE≌Rt△A'AF.
因此A'E=A'F,从而可得DE=DF.故AD平分∠BAC,
又∵AB=AC,∴BC⊥AD.故BC⊥AA'.∵AA'∥BB',∴BC⊥BB'.因此四边形BCC'B'是矩形,故斜三棱柱的侧面积为2×a×bsin45°+ab=(+1)ab.
又∵斜三棱柱的底面积为2×a2=a2,∴斜三棱柱的表面积为(+1)ab+a2.
(2)由(1),所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,底面,点分别为棱的中点.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,是边长为的正三角形,平面⊥平面分别为的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是边长为2的正方形,⊥平面,,// 且.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱柱种侧棱垂直于底面,,且三棱柱的体积为3,则三棱柱的外接球的表面积为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在单位正方体的面对角线上存在一点P使得最短,则的最小值           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

绕直线旋转一周所得的几何体的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则       .

查看答案和解析>>

同步练习册答案