【题目】已知f(x)是定义在R上的偶函数,且f(x)在(﹣∞,0]上单调递减,则不等式f(lgx)>f(﹣2)的解集是( )
A.( ,100)
B.(100,+∞)
C.( ,+∞)
D.(0, )∪(100,+∞)
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题,其中m,n,l为直线,α,β为平面
①mα,nα,m∥β,n∥βα∥β;
②设l是平面α内任意一条直线,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正确的是( )
A.①②
B.②③
C.②④
D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2.
(1)求证:平面AEF⊥平面PBC;
(2)求三棱锥P﹣AEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=bax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)= ﹣ ,确定函数g(x)的奇偶性;
(2)若对任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)五边形中,
,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.
(1)求证:平面平面;
(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,点E、F分别为棱AB、PD的中点. (Ⅰ)求证:AF∥平面PCE;
(Ⅱ)AD与平面PCD所成的角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com