精英家教网 > 高中数学 > 题目详情
若(x+)n(n∈N)的展开式中各项系数的和大于8且小于32,则展开式中系数最大的项应是(    )

A.6x                 B.x             C.10x2                       D.20x3

解析:(x+)n的展开式中各项系数的和为2n.

由8<2n<32,得3<n<5,故n=4,展开式中系数最大的项为第3项,T3=x2·()2=6x.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数fn(x)=(1+x)n-1(x>-2,n∈N*)其导函数记为
f
n
(x)

(Ⅰ)求y=fn(x)-nx的单调递增区间;
(Ⅱ)若
f
n
(x0)
f
n+1
(x0)
=
fn(1)
fn+1(1)
,求证:0<x0<1;
(Ⅲ)设函数φ(x)=f3(x)-f2(x),数列{ak}前k项和为Sk,2kSk=φ(k-1)+2kak,其中a1=1.对于给定的正整数n(n≥2),数列{bn}满足ak+1bk+1=(k-n)bk(k=1,2…,n-1),且b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在D上的函数,若对D中的任意两数x1,x2(x1≠x2),恒有f(
1
3
x1+
2
3
x2
)<
1
3
f(x1)+
2
3
f(x2)
,则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f(x)=x2是否为定义域上的C函数,并说明理由;
(Ⅱ)若函数f(x)是R上的奇函数,试证明f(x)不是R上的C函数;
(Ⅲ)设f(x)是定义在D上的函数,若对任何实数a∈[0,1]以及D中的任意两数x1,x2(x1≠x2),恒有f(ax1+(1-a)x2)≤af(x1)+(1-a)f(x2),则称f(x)为定义在D 上的π函数.已知f(x)是R上的m函数.m是给定的正整数,设an=f(n),n=0,1,2,…m,且a0=0,am=2m,记Sf=a1+a2+…+am.对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)设f(x)=
(x+a)lnx
x+1
,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若?x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的范围.
(3)求证:ln
42n+1
n
i=1
i
4i2-1
.(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x+)n(n∈N)的展开式中各项系数的和大于8且小于32,则展开式中系数最大的项应是(    )

A.6x           B.3x            C.10x2           D.20x3

查看答案和解析>>

同步练习册答案