精英家教网 > 高中数学 > 题目详情

正四面体ABCD中,AO⊥平面BCD,垂足为,设是线段上一点,且是直角,则的值为                  .

1.

解析试题分析:延长BO,交CD于点N,可得BN⊥CD且N为CD中点

设正四面体ABCD棱长为1,得等边△ABC中,BN=,BC=
∵AO⊥平面BCD,∴O为等边△ABC的中心,得BO=,BN=
Rt△ABO中,AO==
设MO=x,则Rt△BOM中,BM==
∵∠BMC=90°,得△BMC是等腰直角三角形,
∴BM=AM=BC,即=,解之得x=
由此可得AM=AO-MO=,所以MO=AM=,从而=1.
考点:本题主要考查正四面体的几何性质,垂直关系。
点评:中档题,本题充分借助于正四面体的几何性质,通过发现等腰三角形,灵活利用勾股定理,达到解题目的。本题解法充分体现了立体几何问题转化成平面几何问题的基本思路。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

一个几何体的三视图如图所示,则该几何体的表面积与体积分别为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在正方体中,分别为的中点,则异面直线所成的角等于       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正三棱锥中,侧面、侧面、侧面两两垂直,且侧棱
,则正三棱锥外接球的表面积为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个正四面体的体积为        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

四面体的五条棱长都是2,另一条棱长为1,则四面体的体积为(    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

右图中的三个直角三角形是一个体积为的几何体的三视图,则h=    cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若圆柱的侧面展开图是边长为4的正方形,则它的体积等于       .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是正三角形ABC的斜二测画法的水平放置直观图,若的面积为,那么的面积为                 .

查看答案和解析>>

同步练习册答案