精英家教网 > 高中数学 > 题目详情
7.已知f(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上同时满足三个条件:(1)对于任意x1,x2∈[0,1],当x1<x2时,恒有f(x1)≤f(x2);(2)f($\frac{x}{5}$)=$\frac{1}{2}$f(x);(3)f(x)+f(1-x)=1,则f($\frac{1}{2}$)+f($\frac{1}{5}$)+f($\frac{1}{15}$)=$\frac{5}{4}$.

分析 根据f(x)为奇函数且在原点有定义,从而有f(0);根据条件(3),令x=1便可求出f(1)=1,令x=$\frac{1}{2}$便可求出f($\frac{1}{2}$)=$\frac{1}{2}$;而由条件(2),分别令x=$1,\frac{1}{2},\frac{1}{5}$便可求出$f(\frac{1}{5})=\frac{1}{2}$,$f(\frac{1}{10})=f(\frac{1}{25})=\frac{1}{4}$,这样根据条件(1)便可得到$f(\frac{1}{25})≤f(\frac{1}{15})≤f(\frac{1}{10})$,从而有f($\frac{1}{15}$)=$\frac{1}{4}$,这样即可求出$f(\frac{1}{2})+f(\frac{1}{5})+f(\frac{1}{15})$的值.

解答 解:∵f(x)是定义在[-1,1]上的奇函数;
∴f(0)=0;
∵f(x)+f(1-x)=1;
∴令x=1得,f(1)+f(0)=1,∴f(1)=1;
令x=$\frac{1}{2}$得,f($\frac{1}{2}$)+$f(\frac{1}{2})$=1,∴$f(\frac{1}{2})=\frac{1}{2}$;
∵$f(\frac{x}{5})=\frac{1}{2}f(x)$;
∴令x=1得,$f(\frac{1}{5})=\frac{1}{2}f(1)=\frac{1}{2}$;
令x=$\frac{1}{2}$得,$f(\frac{1}{10})=\frac{1}{2}f(\frac{1}{2})=\frac{1}{4}$;
令x=$\frac{1}{5}$得,$f(\frac{1}{25})=\frac{1}{2}f(\frac{1}{5})=\frac{1}{4}$;
又对于任意x1,x2∈[0,1],当x1<x2时,恒有f(x1)≤f(x2),且$\frac{1}{25}<\frac{1}{15}<\frac{1}{10}$;
∴$f(\frac{1}{15})=\frac{1}{4}$;
∴$f(\frac{1}{2})+f(\frac{1}{5})+f(\frac{1}{15})=\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{5}{4}$.
故答案为:$\frac{5}{4}$.

点评 考查奇函数的定义,奇函数在原点有定义时f(0)=0,以及对于题中所给三个条件的理解和灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=1oga(1-x)+1oga(x+3)(0<a<1).
(1)求函数f(x)的定义域;
(2)解方程f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,余弦定理表达正确的是(  )
A.a2=b2+c2+2accosAB.b2=a2+c2-2accosB
C.c2=a2+b2-2absinCD.以上结果都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0).
(1)求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期和单调减区间;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],函数f(x)=λ$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为$\frac{1}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在命题“m>0,n>0,若椭圆mx2+ny2=1的焦点在x轴上,则m>n”的逆命题、否命题、逆否命题中,真命题个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.非负实数x满足$\left\{\begin{array}{l}{x+2y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=3x+y的最大值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知|AB|=4$\sqrt{2}$,A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),且三内角A,B,C满足sinB-sinA=$\frac{1}{2}$sinC,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{0,x<0}\\{π,x=0}\\{x+1,x>0}\end{array}\right.$,则f(-3)=0,f(0)=π,f(3)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=2,an+1=a2n-an+λ.
(I)是否存在实数λ,使得数列{an}是等比数列,若存在,求出λ的值;不存在,说明理由;
(Ⅱ)当λ=1时,证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<1.

查看答案和解析>>

同步练习册答案