分析 根据f(x)为奇函数且在原点有定义,从而有f(0);根据条件(3),令x=1便可求出f(1)=1,令x=$\frac{1}{2}$便可求出f($\frac{1}{2}$)=$\frac{1}{2}$;而由条件(2),分别令x=$1,\frac{1}{2},\frac{1}{5}$便可求出$f(\frac{1}{5})=\frac{1}{2}$,$f(\frac{1}{10})=f(\frac{1}{25})=\frac{1}{4}$,这样根据条件(1)便可得到$f(\frac{1}{25})≤f(\frac{1}{15})≤f(\frac{1}{10})$,从而有f($\frac{1}{15}$)=$\frac{1}{4}$,这样即可求出$f(\frac{1}{2})+f(\frac{1}{5})+f(\frac{1}{15})$的值.
解答 解:∵f(x)是定义在[-1,1]上的奇函数;
∴f(0)=0;
∵f(x)+f(1-x)=1;
∴令x=1得,f(1)+f(0)=1,∴f(1)=1;
令x=$\frac{1}{2}$得,f($\frac{1}{2}$)+$f(\frac{1}{2})$=1,∴$f(\frac{1}{2})=\frac{1}{2}$;
∵$f(\frac{x}{5})=\frac{1}{2}f(x)$;
∴令x=1得,$f(\frac{1}{5})=\frac{1}{2}f(1)=\frac{1}{2}$;
令x=$\frac{1}{2}$得,$f(\frac{1}{10})=\frac{1}{2}f(\frac{1}{2})=\frac{1}{4}$;
令x=$\frac{1}{5}$得,$f(\frac{1}{25})=\frac{1}{2}f(\frac{1}{5})=\frac{1}{4}$;
又对于任意x1,x2∈[0,1],当x1<x2时,恒有f(x1)≤f(x2),且$\frac{1}{25}<\frac{1}{15}<\frac{1}{10}$;
∴$f(\frac{1}{15})=\frac{1}{4}$;
∴$f(\frac{1}{2})+f(\frac{1}{5})+f(\frac{1}{15})=\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{5}{4}$.
故答案为:$\frac{5}{4}$.
点评 考查奇函数的定义,奇函数在原点有定义时f(0)=0,以及对于题中所给三个条件的理解和灵活运用.
科目:高中数学 来源: 题型:选择题
A. | a2=b2+c2+2accosA | B. | b2=a2+c2-2accosB | ||
C. | c2=a2+b2-2absinC | D. | 以上结果都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com