精英家教网 > 高中数学 > 题目详情

抛物线y2=4x的焦点为F,准线为l,点M(4,4)是抛物线上一点,则经过点F,M且与l相切的圆共有________个.

2
分析:圆心在FM的中垂线,经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,圆心在抛物线上,直线与抛物线交于两点,得到有两个圆.
解答:连接FM,做它的中垂线,则要求的圆心就在中垂线上,
经过点F,M且与l相切的圆的圆心到准线的距离与到焦点F的距离相等,
∴圆心在抛物线上,
∵直线与抛物线交于两点,
∴这两点可以作为圆心,这样的原有两个,
故答案为:2.
点评:本题考查抛物线的简单性质,本题解题的关键是看出圆心的特点,看出圆心必须在抛物线上,而直线与抛物线有两个交点,即有两个点可以作为圆心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,直线m为抛物线在第一象限内一点P处的切线,过P作平行于x轴的直线n,过焦点F平行于m的直线交n于点M,若|PM|=4,则点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,点A,B在抛物线上,且∠AFB=
3
,弦AB中点M在准线l上的射影为M′,则
|MM′|
|AB|
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,且抛物线与2x+y-4=0交于A、B两点,则|FA|+|FB|=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F.
(1)若直线l过点M(4,0),且F到直线l的距离为2,求直线l的方程;
(2)设A,B为抛物线上两点,且AB不与X轴垂直,若线段AB中点的横坐标为2.求证:线段AB的垂直平分线恰过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点,且点A在第一象限.
(Ⅰ)若
AF
=2
FB
,求直线AB的斜率;
(Ⅱ)求三角形OAB面积的最小值(O为坐标原点).

查看答案和解析>>

同步练习册答案