精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.

【答案】(Ⅰ) ;(Ⅱ)

【解析】

(Ⅰ)由直线的参数方程消去参数得直线的普通方程,再根据极坐标方程与直角坐标方程的转化关系可得曲线的直角坐标方程;

(Ⅱ)根据已知条件可得直线的参数方程,将直线的参数方程代入曲线的直角坐标方程中,根据直线参数方程中的参数的几何意义和交点的中点可得的值.

(Ⅰ)∵直线的参数方程为为参数),

∴直线的普通方程为

,得,即

∴曲线的直角坐标方程为

(Ⅱ)∵直线经过曲线的焦点

,直线的倾斜角

∴直线的参数方程为为参数)

代入,得

两点对应的参数为

为线段的中点,∴点对应的参数值为

又点,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆轴被曲线截得的线段长等于C1的长半轴长.

1)求实数b的值;

2)设C2轴的交点为M,过坐标原点O的直线C2相交于点AB,直线MAMB分别与C1交于点DE.

证明:

△MAB△MDE的面积分别是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若,求数列的通项公式;

(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;

(3)若,且,数列有最大值与最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于双曲线(),若点满足,则称的外部;若点满足,则称的内部.

(1)证明:直线上的点都在的外部.

(2)若点的坐标为,点的内部或上,求的最小值.

(3)过点,圆()内部及上的点构成的圆弧长等于该圆周长的一半,求满足的关系式及的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且对一切,均有.

1)求证:数列为等差数列,并求数列的通项公式;

2)若,求数列的前n项和

3)设),记数列的前n项和为,问:是否存在正整数,对一切,均有恒成立.若存在,求出所有正整数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案