精英家教网 > 高中数学 > 题目详情

如图示,在底面为直角梯形的四棱椎P   ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.

(1)求证:BD^平面PAC ;

(2)求二面角A—PC—D的正切值;

(3)求点D到平面PBC的距离.

 

【答案】

(1)见解析;(2);(3)

【解析】

试题分析:(1)三角形AOB中,由勾股定理得:BO^AC,即:BD^AC, 又BD^PA,ACÇ PA=A,由线面垂直判定定理可得BD^平面PAC;(2)先作出二面角的平面角,然后在直角三角形中求出正切值;(3)利用等积法,由VD—PBC = VP—BDC即可求出点D到平面PBC的距离.

试题解析:解:(1)令BD与AC相交于点O,不难求得:AC=4,BD= 4

由DAOD~DBOC得:BO=×4= 3;AO=×4=;

\ BO2+AO2 = (3)2+()2= 12= AB2

\由勾股定理得:BO^AC,即:BD^AC, 又BD^PA,ACÇ PA=A,

\ BD^平面PAC          3分

(2)由(1)知:DO^平面PAC,过O作OH^PC于H,连DH,则DH^PC

则ÐDHO就是二面角A—PC—D的平面角, DO=×BD =×4=1 ,

CO=×AC=×4=3, 由RtDPAC~RtDOHC得: =,又PC= = 8, OH=.tanÐDHO= =.          7分

(3)由VD—PBC = VP—BDC可得:h=.         10分

考点:1.线面垂直的判定;2.二面角的求法;3.点到平面的距离求法

 

练习册系列答案
相关习题

同步练习册答案