精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,其焦距为,若,则称椭圆为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是,以,为顶点的菱形的内切圆过焦点.

(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;

(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.

【答案】(1)见解析(2)见解析

【解析】分析:(1)“黄金双曲线“的离心率为的倒数).

(2)把椭圆结论中点交换位置得双曲线的性质.

详解:(1)黄金双曲线的定义:已知双曲线,其焦距为,若(或写成),则称双曲线为“黄金双曲线”.

(2)在黄金双曲线的性质:已知黄金双曲线的左、右焦点分别是

为顶点的菱形的内切圆过顶点.

证明:直线的方程为,原点到该直线的距离

,得

代入,得,又将代入,化简得

故直线与圆相切,同理可证直线均与圆相切,即以的直径的圆为菱形的内切圆,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的值域为A.

(1)的为偶函数时,求的值;

(2) , A上是单调递增函数,求的取值范围;

(3)时,(其中),若,且函数的图象关于点对称,在处取 得最小值,试探讨应该满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行下面的程序框图,输出的值为3,则判断框中应填入的条件是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn

(1)求an及Sn

(2)令bn(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
(3)证明: (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线与曲线分别交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

为了预测印刷千册时每册的成本费建立了两个回归模型.

(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程并预测印刷千册时每册的成本费.

附:对于一组数据,…,其回归方程的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷数列满足:为正整数,且对任意正整数为前中等于的项的个数.

1)若,求的值;

2)已知命题 存在正整数,使得,判断命题的真假并说明理由;

3)若对任意正整数,都有恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为正实数,n为自然数,抛物线 与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.
(1)用a和n表示f(n);
(2)求对所有n都有 成立的a的最小值;
(3)当0<a<1时,比较 的大小,并说明理由.

查看答案和解析>>

同步练习册答案