精英家教网 > 高中数学 > 题目详情

【题目】从某电子商务平台随机抽取了1000位网上购物者(年消费都达到2000元),并对他们的年龄进行了调查,统计情况如下表所示:

年龄

人数

100

150

400

200

100

50

该电子商务平台将年龄在的人群定义为消费主力军,其它年龄段定义为消费潜力军.

(1)若该电子商务平台共10万位网上购物者,试估计消费主力军的人数;

(2)为了鼓励消费潜力军消费,该平台决定对年消费达到2000元的购物者发放代金券,消费主力军每人发放100元,消费潜力军每人发放200元.现采用分层抽样(按消费主力军与消费潜力军分层)的方式从参与调查的1000位网上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求这3人获得代金券总金额(单位:元)的分布列及数学期望.

【答案】(1)万;(2)分布列见解析,期望为元.

【解析】

(1)根据直方图找出年龄分布在的频率再乘以10万得解

(2)根据消费主力军与消费潜力军人群的比例关系得出人数比, 再根据超几何分布的概率公式得出分布列和数学期望.

解:(1)由表可知年龄分布在的频率为

故消费主力军的人数约为万.

(2)由题可知这10人中有6人属于消费主力军,4人属于消费潜力军,则的所有可能取值为300,400,500,600,

的分布列为

300

400

500

600

元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数是(

A=的子集有个;

②命题的否定是使得

函数取得最大值的充分不必要条件;

④根据对数定义,对数式化为指数式

⑤若,则的取值范围为

.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是定义在上的奇函数,且当时,.

(Ⅰ)若,求函数的解析式;

(Ⅱ)若,方程至少有两个不等的解,求的取值集合;

(Ⅲ)若函数上的单调减函数,

①求的取值范围;

②若不等式成立,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数,满足,且对任意实数),恒有成立.

⑴试写 出一组满足条件的具体的,使为增函数,为减函数,但为增函数.

⑵判断下列两个命题的真假,并说明理由.

命题1):若为增函数,则为增函数;

命题2):若为增函数,则为增函数.

⑶已知,写出一组满足条件的具体的,且为非常值函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记曲线fx)=xex上任意一点处的切线为直线lykx+b,则k+b的值不可能为(  )

A. B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市实施全域旅游,将乡村旅游公路建设与特色田园乡村发展结合,精心打造全长365公里的“1号公路,对内串联区域内主要景区景点和自然村,对外通达周边县(市),以路引景、为景串线,形成一个大环小圈、内连外引的路网体系.如今的“1号公路,不仅成为该市旅游业的颜值担当,更成为推动乡村振兴的实力担当,农村居住环境日益改善,新农村别墅随处可见.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面是全等的等腰梯形,左右两坡屋面是全等的三角形.在平面上的射影分别为(即:平面,垂足为,垂足为.已知,梯形的面积是面积的2.2..

1)当时,求屋顶面积的大小;

2)求屋顶面积关于的函数关系式;

3)已知上部屋顶造价与屋顶面积成正比,比例系数为为正的常数),下部主体造价与其高度成正比,比例系数为.现欲造一栋上、下总高度为的别墅,试问:当为何值时,总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若的图象在处的切线恰好也是图象的切线.

①求实数的值;

②若方程在区间内有唯一实数解,求实数的取值范围.

(2)当时,求证:对于区间上的任意两个不相等的实数 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.

查看答案和解析>>

同步练习册答案