精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且 ,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则 的最小值为

【答案】
【解析】解:连接AM、AN, ∵等腰三角形ABC中,AB=AC=1,A=120°,
=| || |cos120°=﹣
∵AM是△AEF的中线,
= )= +
同理,可得 = + ),
由此可得 = = (1﹣m) + (1﹣n)
=[ (1﹣m) + (1﹣n) ]2= (1﹣m)2+ (1﹣m)(1﹣n) + (1﹣n)2
= (1﹣m)2 (1﹣m)(1﹣n)+ (1﹣n)2
∵m+4n=1,可得1﹣m=4n
∴代入上式得 = ×(4n)2 ×4n(1﹣n)+ (1﹣n)2= n2 n+
∵m,n∈(0,1),
∴当n= 时, 的最小值为 ,此时 的最小值为
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为偶函数
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判断λ与E的关系;
(3)当x∈[ ](m>0,n>0)时,若函数f(x)的值域[2﹣3m,2﹣3n],求实数m,n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。

证明:(1)直线EE//平面FCC

(2)求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布直方图.

(1)为了能选拔出优秀的学生,该校决定在笔试成绩较高的第3组、第4组、第5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生由考官A面试,求第4组至少有一名学生被考官A面试的概.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④
其中正确式子的序号是(

A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两个焦点为
的曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案